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RESEARCH ARTICLE

Simulation model calibration with dynamic stratification and adaptive 
sampling
Pranav Jaina, Sara Shashaani a and Eunshin Byonb

aEdward P. Fitts Department of Industrial and System Engineering, North Carolina State University, Raleigh, NC, USA; bDepartment of 
Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA

ABSTRACT
Calibrating simulation models that take large quantities of multi-dimensional data as input is 
a hard simulation optimization problem. Existing adaptive sampling strategies offer 
a methodological solution. However, they may not sufficiently reduce the computational 
cost for estimation and solution algorithm’s progress within a limited budget due to extreme 
noise levels and heteroscedasticity of system responses. We propose integrating stratification 
with adaptive sampling for the purpose of efficiency in optimization. Stratification can exploit 
local dependence in the simulation inputs and outputs. Yet, the state-of-the-art does not 
provide a full capability to adaptively stratify the data as different solution alternatives are 
evaluated. We devise two procedures for data-driven calibration problems that involve a large 
dataset with multiple covariates to calibrate models within a fixed overall simulation budget. 
The first approach dynamically stratifies the input data using binary trees, while the second 
approach uses closed-form solutions based on linearity assumptions between the objective 
function and concomitant variables. We find that dynamical adjustment of stratification 
structure accelerates optimization and reduces run-to-run variability in generated solutions. 
Our case study for calibrating a wind power simulation model, widely used in the wind 
industry, using the proposed stratified adaptive sampling, shows better-calibrated parameters 
under a limited budget.
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1. Introduction

Many simulation models, particularly those used to 
emulate real engineering systems, have physically 
unobservable parameters. This can be due to having 
a simulation model that has simplified the real sys-
tem’s dynamics (similar to low-fidelity models), or due 
to the environmental characteristics in which the real 
system operates (for example, the geographical and 
weather-related effects for a particular location and 
time), or due to the need for removing the initial 
transient state of the simulation to prepare the simu-
lated data for analysis in time-dependent simulation 
outputs (for example, the warm-up period for 
a steady-state analysis). Particularly, in the first two 
examples, differences between simulated and real data 
are addressed during the important practice of calibra-
tion (Sargent, 2010; Schruben, 1980).

Calibration of simulation experiments with real- 
world observations is generally done through meta-
modeling approaches, typically with Bayesian models 
(Kennedy & O’Hagan, 2001; Pousi et al., 2013). 
However, these methods do not scale well with the 
size of the data or the number of the calibration para-
meters (Jeong & Byon, 2024; Jeong et al., 2023). In the 
simulation literature, the so-called direct model 

calibration is one that formulates the problem as 
a simulation optimization where the empirical loss is 
minimized by searching for the optimal calibration 
parameters over their feasible space (Tolk et al.,  
2017) [Chapter 3]. Global search methods such as 
simulated annealing (SA) or random search (RS), as 
well as meta-heuristics such as the genetic algorithm 
or particle swarm optimization are popular for such 
problems (Guzmán-Cruz et al., 2009; Juan Felipe 
Parra & Arango-Aramburo, 2018; S. Liu et al., 2007; 
Tahmasebi et al., 2012) with the downside of lacking 
computational efficiency and convergence guarantees. 
Efficient stochastic optimization methods have proven 
effective for simulation model calibration using sto-
chastic gradient (B. Liu et al., 2022) or line search 
methods (J. Yuan et al., 2012).

1.1. Calibration as a simulation optimization

In traditional calibration of stochastic simulations, the 
discrepancy between the simulated and observed out-
put values is computed while the inputs are simulated 
following an input probability model – a common 
practice in calibrating epidemiological models 
(Cheng et al., 2023). But in many simulation 
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experiments, the output data as well as real (not simu-
lated) input data is used. We term these calibration 
problems data-driven calibration given that the input 
itself is directly queried from a real dataset of both 
inputs and outputs of the real-world system.

For example, in wind power generation models, 
a simulation model depends on unobservable para-
meters, such as the wake parameter that describes 
the effect of wind decay in downstream turbines. The 
wake parameter θ can depend on a wind farm’s loca-
tion and other local characteristics. Suppose that 
ððxi; yiÞ : i ¼ 1; 2; . . . ; nÞ is a collection of observed 
wind characteristic vectors xi 2 R q (inputs), and 
observed generated wind power yi 2 R p (outputs) 
from a particular wind farm over time, where p is the 
number of turbines in the wind farm. The simulation 
model generates, as output, the predicted power – 
a vector-valued function hðθ; xiÞ in R p. The calibra-
tion problem involves finding the wake parameter that 
best matches simulated and real outputs, i.e.,  

The problem above is also known as the empirical risk 
minimization (ERM). The simulation model, if accu-
rately tuned, can be used to make decisions about the 
real system. However, if n is large, then enumerating all 
n data points to evaluate the performance under each θ 
will be very inefficient because each hðθ; xiÞ evaluation 
requires running the simulation. In this case, one 
might resort to sampling, which renders ERM 
a stochastic problem. Using randomly selected small- 
scale data can alleviate the computational burden, so 
long as we can accurately tune the simulation model 
without utilizing all the observed data points. But when 
data is noisy, small samples result in inaccurate infer-
ence about the calibration parameter. In many appli-
cations such as those involving reliability (e.g., in wind 
power generation), using suboptimal calibration para-
meters to make decisions about the real system can 
cause high-risk consequences.

1.2. Contributions

Viewing calibration as a simulation-optimization pro-
cess, where the expected discrepancy between the 
model and real data is minimized, raises the question: 
can one reduce the algorithm complexity, that is, the 
overall simulation model runs to find a robust calibra-
tion parameter? Often, under a pre-specified compu-
tational budget, answering this question concerns 
allocating effort for (i) exploration, (ii) exploitation, 
and (iii) estimation in each iteration of the optimiza-
tion algorithm (Andradóttir & Prudius, 2009; Gao 
et al., 2015). Better exploration of the calibration para-
meter space and finding near-optimal solutions 

requires reducing the per-iteration budget, that is, 
the cost of estimation, as much as possible. We will 
formalize this discussion with a survey on adaptive 
sampling stochastic optimization methods used 
towards this goal in Section 2. But what is unique 
about a calibration problem to obtain cheaper esti-
mates throughout the optimization process?

Ample input and output data in calibration con-
texts suggest a potential for stratified sampling – 
a well-known variance reduction technique wherein 
the input domain is divided into multiple disjoint sub- 
regions, each of which with discerning distributional 
behaviour of the outputs due to heteroscedasticity. 
The benefit of partitioning the data comes from the 
fact that the weighted average of conditional output 
variances is at most as large as the unconditional 
variance, that is, EB½VarðAjBÞ� � VarðAÞ for any two 
random variables A and B. All stratified sampling 
research seeks to maximize this reduction in variance. 
Meanwhile, when used within optimization, one has 
to account for estimating the performance of many 
alternatives for the calibration parameter. Since the 
distribution of simulation outputs changes under 
each θ, it is reasonable to consider that the optimal 
partitioning for each θ should also vary. Hence, 
a priori partitioning of the input space (before starting 
the optimization algorithm) may be suboptimal. 
Therefore, the challenge of using stratified sampling 
within optimization can involve, in addition to choos-
ing the sample size in each stratum, determining the 
best stratification structure for each θ evaluated during 
optimization. With existing research addressing the 
former Jain et al. (2023), in this paper we focus on 
the latter and its integration within the optimization 
algorithm. We explore whether or not there is effi-
ciency gains in choosing input sub-regions carefully 
for each iteration if it can be done at a low cost.

To that end, in a survey of stratified sampling 
techniques for estimation (Section 3), we investigate 
the risks in allocating budget to each stratum due to 
poor estimates of conditional variance of outputs, 
which can be particularly concerning if the strata 
boundaries keep changing during optimization. We 
discuss that, for dynamic strata, post-stratified sam-
pling is a safe choice due to keeping the sampling 
distribution independent of the stratification struc-
ture. That is, we adopt independent sampling from 
the entire input space and then assign weights to each 
sample based on the placement of strata. We further 
leverage post-stratification variance as the metric 
when dynamically choosing the strata.

Next, we present two approaches to finding effec-
tive stratification structures (Section 4). The first 
method divides the data via binary trees (BT) for 
a greedy optimization of an objective function differ-
ent from the standard trees. We propose an informa-
tion gain metric to evaluate the reduction in variance 
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achieved after splitting a node and use that to choose 
the number of strata. The second method uses a linear 
relationship between some transformation of auxiliary 
or concomitant variables (ConV) and the outputs to 
approximate closed-form boundaries. Sometimes, 
rapidly computable conditional means of input (not 
simulated) data as concomitant variables can be used, 
reducing the small simulated sample risks on strata 
misspecification. We extend the closed-form deriva-
tions for variables to simulated data and propose ideas 
to choose the best concomitant variable and the num-
ber of strata in each iteration. Increased learning abil-
ity using all available data without needing new 
simulation runs and faster computation are the advan-
tages of the second approach. Yet, it uses one conco-
mitant variable at a time and hence may be less flexible 
than the first approach, which can stratify multiple 
variables jointly.

Lastly, we conduct a thorough numerical experi-
ment (Section 5) with dynamically stratified adaptive 
sampling with BT and ConV and compare their per-
formance with Bayesian optimization (BO), SA, and 
RS on Monte Carlo and discrete-event simulation toy 
examples. Further, implementation in a case study for 
the wind power simulation model calibration proves 
the effectiveness of the proposed methods in a real- 
world application and provides insights on their sen-
sitivity and consistency. Comparisons are summarized 
with emphasis on remaining gaps and open questions 
for future research (Section 6).

2. Mathematical background and 
contributions

In this section, we define the data-driven calibration 
problem as a simulation optimization. We review its 
computational challenges, to remedy which we focus 
on a particular class of optimization algorithms that 
uses adaptive sampling within trust regions. We then 
list our contributions and gained insights that render 
this algorithm more successful for calibration.

2.1. Problem formulation and standing 
assumptions

Consider the random instances of data ðX;YÞ being 
generated from an underlying joint probability distri-
bution and let hðθ;XÞ be the simulated random output 
corresponding to the vector pair ðX;YÞ. Then, defin-
ing the loss function ,ðhðθ;XÞ;YÞ as a measure of 
discrepancy between hðθ;XÞ and Y , the objective 
function becomes 

The function f ðθÞ is non-negative, and we assume that 
it is nonconvex (due to nonconvexity of hð�;XÞ) but 

continuously differentiable with Lipschitz continuous 
gradients, i.e., there exists a constant L<1 such that 
k Ñθf ðθ1Þ � Ñθf ðθ2Þ k� L k θ1 � θ2 k for any 
θ1; θ2 2 �. For the remainder of this paper, we sim-
plify the random objective function notation with 
Fðθ; ðX;YÞÞ :¼ ,ðhðθ;XÞ;YÞ. The actual joint prob-
ability distribution in (2) is unknown. Thus, we esti-
mate the expected value at a particular θ in (2) via 
Sample Average Approximation (SAA) using 
a random sample set S of size N from the available 
dataset, i.e.,  

In other words, we consider each evaluation of the 
objective function for a single data point as one simula-
tion replication, and the total evaluations throughout 
the optimization are accounted for as the computa-
tional budget needed to reach an optimal solution. 
Under the Big Data context, i.e., large n, the selection 
of the points will be considered in an identically dis-
tributed and independent (i.i.d.) fashion. Most simu-
lation models hðθ; �Þ are too complex to have direct 
access to their derivatives with respect to θ. Although 
direct gradients can be computable via techniques 
such as infinitesimal perturbation analysis (Suri,  
1987), in most instances, that requires additional pro-
gramming and analysis that may not be a feasible 
option in many applications. Hence, we consider the 
simulation model as a complete black-box and assume 
that ÑθFðθ; �Þ are unavailable, which makes this pro-
blem a derivative-free optimization (DFO) (Conn 
et al., 2009).

2.2. Efficiency challenges for derivative-free 
simulation optimization

DFO problems are much harder to solve due to the 
needed extra effort to approximate gradients through 
derivative-free methods. Therefore, the main chal-
lenge is: can we obtain good solutions with an opti-
mization algorithm in this setting given a fixed 
computational budget? The answer to this question 
involves the trade-off between exploration and 
exploitation that, while primarily known in 
Bayesian optimization, is a general challenge with 
optimization algorithms evaluated in finite time. In 
a deterministic viewpoint, exploitation refers to eval-
uating the objective function value at multiple θ’s 
within a sub-region to track it locally. Expending 
a lot of budget for exploitation leaves less budget 
for the algorithm to explore other regions of the 
search space. Using the objective function’s structure 
to determine the number of θ’s is not a viable option 
in DFO. Instead, DFO solvers expend budget to 
approximate the gradients with interpolation or 

JOURNAL OF SIMULATION 3



finite differencing, among other methods. In the 
stochastic DFO, if the simulation outputs are very 
noisy, the approximated gradient can be inaccurate, 
and these methods can struggle to reach good solu-
tions. Hence, exploitation in a stochastic setting 
involves both the number of θ’s visited to approx-
imate the gradient and estimating the objective func-
tion at each of those θ’s.

Trust-region (TR) methods are increasingly known 
to be effective for non-convex DFO problems com-
pared to line search or stochastic gradient methods 
due to their strict control of step size (tuned automa-
tically throughout the search) and their implicit use of 
curvature by constructing a quadratic local model 
(Y. X. Yuan, 2015). The performance of TR depends 
on the quality of these local models as their high- 
quality can consistently identify good steps and pro-
gress per iteration.

However, the challenge with building high-quality 
models stems from the estimation error, which with 
N Monte Carlo samples are inversely proportional 
to 

ffiffiffiffi
N
p

. Thus, given a fixed budget, having reliable 
estimates that can help build better local models 
(exploitation) comes at the cost of losing the budget 
to take more steps (exploration). An efficient algo-
rithm appropriately determines the sample size at 
each point within the local sub-region while keeping 
enough budget for exploration. A successful strategy 
for this trade-off adapts the choice of SðθÞ as 
a function of θ to the variability of Fðθ; �Þ and to 
the precision stipulated for convergence, i.e., more 
accurate models and function estimates as the algo-
rithm nears the optimal region (Byrd et al., 2012). 
Recently, a TR-based algorithm that incorporates 
adaptive sampling for the DFO problems, and 
hence is appropriate for data-driven calibration, 
has been developed, called ASTRO-DF (Adaptive 
Sampling Trust-Region Optimization – Derivative- 
Free) (Shashaani et al., 2016, 2018). In this paper, we 
will use this algorithm as an instance of adaptive 
sampling solvers and investigate on how to tailor it 
for data-driven calibration. As discussed in 
Section 1, our goal will be to integrate dynamic 
stratification within this solver.

2.3. Adaptive sampling trust-region 
optimization – derivative-free

ASTRO-DF is an almost surely convergent simulation 
optimization solver for nonconvex problems that 
builds a local model in each iteration via interpolation 
and decides the number of simulation runs (samples) 
based on a proxy for optimality gap. The adaptive 
sample size guarantees the fastest proven sample com-
plexity of Oð�� 4 log �� 1Þ to reach ε-optimality (Ha 
et al., 2024). Had the direct gradient observations 

been available, the lower-complexity solver 
(ASTRO – the derivative-based version of ASTRO- 
DF) could be used (Vasquez et al., 2019).

To better understand the sampling mechanism, let 
us briefly review the TR methods. For θk as the iterate 
(incumbent solution) at iteration k, a TR is defined as 
a closed ball around θk, Bk ¼ fθ :k θ � θkk2 � Δkg, 
where Δk is the TR radius. A local model Mkð�Þ is 
then fitted to estimated objective function values at 
multiple θ’s inside Bk. This model suggests a candidate 
for the next incumbent, ~θkþ1 by predicting where the 
function will be minimized within Bk. The reduction 
in the estimated objective function value at ~θkþ1 is 
then compared to the corresponding reduction in the 
model. If sufficient reduction in the objective function 
value is achieved at ~θkþ1, then the candidate solution is 
accepted, i.e., θkþ1 ¼ ~θkþ1, and the TR expands. If 
rejected, then θkþ1 ¼ θk, the TR radius shrinks, and 
a new model is constructed in a smaller neighbour-
hood around θk. For a complete listing of the new 
variant of this algorithm that uses the new proposed 
approaches for dynamic stratification, see Section 3.4.

In a (deterministic) DFO setting, the TR model 
gradient (in Euclidean norm) is maintained in lock- 
step with the TR radius, i.e., k ÑMkðθkÞ k¼ OðΔkÞ

(Conn et al., 2009). Then, proving that 
limk!1 Δk ¼ 0 guarantees that the model gradient 
converges to 0. Handling the stochasticity comes in 
when one also needs to maintain a lock-step between 
the model gradient and the true function gradient. 
This is, in effect, what a high-quality model needs to 
accomplish in every iteration. ASTRO-DF deals with 
this challenge by choosing the optimal (i.e., most effi-
cient) sample size at each visited θ. Since the sequence 
fΔkg shrinks as the algorithm nears optimality, 
ASTRO-DF uses the fourth power (appropriately 
selected to maintain model quality) of the TR radius 
as the acceptable upper bound for the standard error 
at each visited θ. The sample size is, therefore, 
a stopping time of the form 

since with every added sample, the LHS (standard 
error estimate) changes and eventually reduces while 
the RHS (slightly deflated optimality gap proxy) 
remains unchanged.

In (3), λk is a deterministic sequence that increases 
logarithmically with k, and κ is a positive constant. 
The deflation ensures that the acceptable standard 
error threshold is stricter in the later iterations and is 
essential for proving almost sure model quality guar-
antees (and hence algorithm convergence) (Ha & 
Shashaani, 2023). Another role of λk is lower bounding 
the sample size so that even under early stopping due 
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to a poor estimate of the standard error, Nk increases 
at least logarithmically to increase estimation accu-
racy. The algorithm first runs λk i.i.d. replications to 
obtain dVarðf̂ ðθk; λkÞÞ and, if needed, adds one sample 
at a time. As a result, the adaptive sample size is small 
during the initial iterations when the optimality gap is 
large and increases in the later iterations when the 
algorithm appears to have neared optimality.

Choosing Nk provides theoretical guarantees for 
efficiency, but since there is no upper limit to the 
stopping time, it can practically be very large due to 
high noise in Fðθk; �Þ. High level of noise is notoriously 
present in data-driven calibration causing extremely 
large sample sizes, which is undesirable under a finite 
budget setting. Enhancing the algorithm with 
a variance reduction technique such as stratified sam-
pling (leveraging the conditional behaviour of the out-
puts in input sub-regions) can help avoid such larger 
sample sizes. However, a seamless incorporation of 
stratified sampling with adaptive sampling is challen-
ging as which stratum to sample from in each recur-
sion of the stopping time induces more uncertainty to 
the algorithm. There are also risks and opportunities 
in selecting the strata themselves appropriately in each 
iteration.

3. Stratified sampling for optimization

Stratified sampling groups similar data into strata such 
that the output within each group is similar and 
between any two groups is different. This helps learn 
the heterogeneity in the data for estimation, which 
leads to variance reduction (Ross, 2013). Intuitively, 
to efficiently allocate overall samples to each stratum, 
more points should be sampled from a stratum with 
higher variance. This efficient allocation of the com-
putational budget can reduce the variance of the esti-
mators and expedite the optimization. The impact of 
stratified sampling on the optimization routine is 
influenced by (i) the allocation scheme used to deter-
mine the sample size of each stratum and (ii) the 
stratification structure.

The allocation scheme depends on what sam-
pling strategy is utilized. Proportional allocation 
sets the sample size of a stratum based on the prob-
ability of picking a point from that stratum. Optimal 
allocation depends on the above probability and the 
output variance in that stratum (Neyman, 1934). An 
inaccurate estimate of these two values can reduce 
the effectiveness of stratified sampling and produce 
worse estimates of the performance. Thus, many 
studies in the literature have averted to explore 
different ways to solve the problem of sample size 
allocation. Mathematical techniques like convex pro-
gramming (Huddleston et al., 1970), branch and 
bound methods (Bretthauer et al., 1999), and delta 

method (Glynn & Zheng, 2021) have been proposed 
to determine the optimal allocation. Since optimal 
allocation can be erratic if the variance cannot be 
estimated accurately, a hybrid allocation scheme that 
switches between proportional and optimal alloca-
tion as more insights are gained by running simula-
tion can also be used (Pettersson & Krumscheid,  
2021). Another common method is an adaptive opti-
mal allocation that minimizes the variance within 
each stratum (Etoré & Jourdain, 2010; Kawai,  
2010). All these studies focus on applying stratified 
sampling for simulations or statistical inference. 
Within the optimization framework, the optimal 
allocation has been implemented via batching 
(Chen et al., 2018; Hassan et al., 2006; Zhao & 
Zhang, 2014). One of the drawbacks of batching is 
that the sample sizes can be larger than specified by 
adaptive sampling and may result in inefficient bud-
get utilization.

The stratification structure can be determined by 
partitioning the data based on an input variable such 
that output data in each stratum exhibits similar 
probabilistic characteristics. Consequently, we can 
assume a separate conditional distribution for the 
outputs in each stratum. This problem has been 
widely analysed for one-time stratification (for infer-
ence) using heuristics like clustering (Farias et al.,  
2020; Tipton, 2013; Zhao & Zhang, 2014), genetic 
algorithms (Keskintürk & Er, 2007), binary trees 
(Jain et al., 2021, 2022), etc. A drawback of these 
heuristics and greedy search methods is their reliance 
on the data used to build the structure, being suscep-
tible to poor performance if the data is noisy or 
insufficient. Another approach is to use 
a theoretically derived closed-form solution to divide 
the data via concomitant variables (Dalenius, 1950). 
Concomitant variables are traditionally simulated 
input data with known mean and variance. If the 
concomitant variables are correlated to the outputs, 
the strata boundaries that minimize the variance can 
be determined by solving implicit equations derived 
given their conditional distributions (Dalenius & 
Gurney, 1951; Taga, 1967). However, the closed- 
form boundaries’ equations are only solvable if the 
concomitant variables follow a well-known probabil-
ity distribution (Sethi, 1963; Singh & Sukhatme,  
1969). Otherwise, iterative fixed-point methods 
(Cochran, 1977; Sethi, 1963), convex optimization 
(Brito et al., 2010; de Moura Brito et al., 2017), and 
dynamic programming (Khan et al., 2008) have been 
used to solve these equations. Using these approaches 
for optimization can be computationally expensive 
given that they will be invoked at every iteration of 
the algorithm. In addition, they are only applicable 
when the number of strata and the stratification 
variable are known a priori, both of which may also 
vary from one iterate to another during optimization.
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3.1. Notations and definitions

Consider a stratification structure I k, which divides the 
input space into Zk disjoint sets (X k;1;X k;2; � � � ;X k;Zk ) 
such that X :¼ [z¼1;...;ZkX k;z is the whole input space. 
For a sample Sk :¼ SðθkÞ of size Nk formed by sub-
samples Sk;z ¼ fðxj; yjÞ 2 Sk : xj 2 X k;zg of size Nk;z 

in each stratum (i.e., Nk ¼
PZk

z¼1 Nk;z), the estimated 
stratified sampling mean is 

where pk;z ¼ E½1ðX 2 X k;zÞ� is the probability of 
drawing a sample whose input lies in stratum z, and 
f̂zðθkÞ is the sample average in stratum z, i.e.,  

Throughout this article, we assume pk;z ¼
jX k;z j

jXj
given 

the big data setting. The variance of the stratified 
sampling estimator is 

where σ2
k;z :¼ E Fðθk; ðX;YÞÞ � fzðθkÞð Þ

2
jX 2 X k;z

� �
is 

the variance of outputs in stratum z with 
fzðθkÞ :¼ E Fðθk; ðX;YÞÞjX 2 X k;z

� �
as its mean. The 

estimated mean and variance of the stratified sampling 
estimator depend on the stratification structure I k and 
the set of sampled points Sk. The reduction in the 
variance of the stratified sampling estimator given I k 
depends on how the samples are allocated to each 
stratum.

3.2. Review: Proportional vs. optimal allocation

For ease of exposure, let Nk be a deterministically 
growing sample size instead of a stopping-time sample 
size chosen adaptively for the remainder of this sec-
tion. In proportional allocation, Nk;z ¼ pk;zNk whereas 
in optimal (or Neyman) allocation Nk;z ¼ wk;zNk, with 
weights computed as 

Optimal allocation results in the lowest variance if 
σk;z’s are known for all z with 

for the optimal and proportional estimator, respec-
tively. However, since estimates of the conditional 
variance σk;z in each stratum, i.e.,  

ought to be used instead, optimal allocation is 
subject to risks due to inaccurate σ̂k;z’s, which is 
more prominent in the early iterations. On the 
other hand, when using proportional allocation, 
the sample size of stratum z depends only on pk;z, 
which can be more rapidly estimated using all the 
available input data. The maximum reduction in 
variance with optimal allocation is mostly effective 
in the later iterations for another reason too. Let 
N 0k;z be the theoretical optimal sample size of stra-
tum z, Varopt be the variance of optimal allocation, 
N̂k;z be the estimated sample size of stratum z with 
optimal allocation and Varest be the corresponding 
variance without stratification such that 
Nk ¼

P
z N 0k;z ¼

P
z N̂k;z. Increased variance due 

to under-or over-estimating the optimal allocation 
sample sizes can be characterized as 

which is more significant when Nk is small (Cochran,  
1977). For early iterations of optimization with small Nk 
(where the algorithm trajectory is most vulnerable for 
progress), using proportional allocation is almost as good 
as the reduction with optimal allocation (Pettersson & 
Krumscheid, 2021). In fact, one can be more confident to 
obtain any reduction in the variance with proportional 
allocation than with the optimal allocation (Asmussen & 
Glynn, 2007, p. 151). In summary, using proportional 
allocation for the purpose of optimization reduces the 
run-to-run variability of the algorithm.

3.3. Allocation schemes with adaptive sampling

Section 3.2 discusses batch-based allocation. However, 
in implementation of stratified sampling in combina-
tion with adaptive sampling rules such as those in 
ASTRO-DF, we need to allocate each sample sequen-
tially, one at a time. First, (3) is replaced by the stan-
dard error on the LHS with the standard error of the 
stratified sampling estimator. Next, if the standard 
error exceeds the optimality gap, it is necessary to 
determine from which stratum should an additional 
point be sampled. A selective randomized method 
proposes selecting a random stratum to sample from 
using the probability mass function 
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where nz is the current number of n samples that 
belong to stratum z and 

with ŵk;z as the estimate of wk;z using nz samples. The 
expected sample size in stratum z for a fixed iterate θk 
conditional on the stopping time is 

The approximation reveals the complication with analys-
ing the sample size of each stratum. Although vk;z has less 
variability in proportional allocation than in optimal allo-
cation, even proportional allocation can result in instability 
simply because ðNk;1;Nk;2; . . . ;Nk;ZkÞ is a multinomial 
random vector with each mode’s probability changing 
sequentially with every new sample added following (6). 
In summary, when using adaptive sampling, both alloca-
tion schemes are subject to the changing sampling distri-
bution with every added sample. It can cause unstable 
updating of θk in the optimization process.

3.4. Post-stratification for stratified adaptive 
sampling with changing strata in optimization

Stratified adaptive sampling has been explored using 
optimal allocation and its extensions for stochastic 
gradient methods (Espath et al., 2021; B. Liu et al.,  
2022) and Nelder Mead (Aguiar et al., 2022) Jain et al.,  
2021, 2022 examined how robust is the implementa-
tion of stratified adaptive sampling for TR methods. 
However, stratified sampling requires the stratification 
structure to be known a priori to sample points from 
each stratum independently. Consequently, most 
existing studies use a constant stratification structure, 
i.e., I k ¼ I for all k, to maintain a consistent sampling 
framework throughout the search. Even with the fixed 
structure, stratified sampling with optimal (or propor-
tional) allocation faces increased stochasticity when 
the sampling distribution changes in the optimization 
process, as discussed in Section 3.3. To overcome these 
vulnerabilities, one can use post-stratification, which 
first samples randomly from the entire population. 
Then the estimation follows similar to stratified 

sampling with proportional allocation using Nk;z, the 
number of sampled points that are within each stra-
tum. Central limit theorems for proportional alloca-
tion apply to post-stratification (Asmussen & Glynn,  
2007), and its finite-time performance in queuing 
simulations has been on par with variance reduction 
obtained using control variates (Wilson et al., 1984).

The post-stratified sampling estimator 
f̂postðθk;NkjI kÞ is evaluated via (4) to obtain each 
f̂zðθkÞ; its variance is then exactly computed 
(Cochran, 1977) as 

The first term in (7) is the variance of the proportional 
allocation, and the second term is the increase in variance 
because the post-stratification does not account for the 
stratification structure. Post-stratification is not an allo-
cation scheme as the allocation happens automatically. 
Importantly, this reduces variability since 
ðNk;1;Nk;2; . . . ;Nk;ZkÞ is now a multinomial random 
vector with each mode’s probability determined by pk;z, 
and hence fixed. From (5), the reduced variability man-
ifests in more stable estimates for the conditional var-
iance in each stratum. In other words, under adaptive 
sample sizes, σ̂k;z obtained via post-stratification is 
a better estimate for σk;z than that obtained via the 
proportional allocation.

When we want to let the stratification structure I k 
change with the decision variable θk, post- 
stratification will again be more appropriate since it 
does not necessitate a priori knowledge of the stratifi-
cation structure when drawing samples. Therefore, we 
can construct the stratification structure using the 
pilot simulations and estimating the post-stratified 
variance estimator (7). This means λk in (3) needs to 
be significantly larger than in the standard ASTRO-DF 
to start, but ultimately, it can save a budget for 
exploration later in the search. In Section 4, we will 
present two approaches for constructing the strata 
from the learning yielded by the λk pilot samples.

Once the stratification structure is ready, we let the 
automatic allocation of samples to each stratum be 
executed, while we only take i.i.d. samples from the 
input space and leverage the adaptive sampling (to 
decide when to stop taking more samples) with less 
effort. If the standard error of the post-stratified esti-
mator is more than the RHS in (3), one point is 
randomly sampled from the entire data that will lie 
in one of the strata depending on the stratification 
structure. Then, the estimates are updated, and the 
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adaptive sampling rule is examined again, and this 
process repeats until (3) is satisfied. Algorithm 1 out-
lines the implementation of ASTRO-DF for a given 
stratification structure I k, and the details of post- 
stratified adaptive sampling are summarized in 
Algorithm 2. The output of Algorithm 2 will be 
denoted depending on whether the input is θk (iter-
ate), θi

k (interpolation points), or ~θkþ1 (candidate 
solution). 

Algorithm 1 ASTRO-DF with Dynamic Post-Stratification

1: Input: Initial solution θ0 and TR radius Δ0, maximum budget T , and 
success threshold η> 0.

2: initialization: Set calls ¼ 0 and iteration k ¼ 0.
3: while calls< T do
4: Estimate f̂postðθk;NkjI kÞ and cVarð̂fpostðθk;NkjI kÞÞ via Alg. 2.
5: Set calls ¼ callsþ Nk .
6: Select 2d points using the coordinate basis in Bk , i.e., 

fθk � Δk eig
d
i¼1.

7: Estimate interpolation points’ function value with Ni
k samples via 

Alg. 2.
8: Set calls ¼ callsþ

P2d
i¼1 Ni

k .
9: Construct model MkðθÞ by interpolation and find ~θkþ1, its 

minimizer in Bk .
10: Estimate ̂fpostð~θkþ1; ~Nkþ1j ~Ikþ1Þ and cVarð̂fpostð~θkþ1; ~Nkþ1j ~Ikþ1ÞÞ via 

Alg. 2.
11: Set calls ¼ callsþ ~Nkþ1.
12: Compute the success ratio ρ̂k ¼

f̂ postðθk ;Nk jI kÞ� f̂ postð~θkþ1 ;~Nkþ1 j ~I kþ1Þ

MkðθkÞ� Mkð~θkþ1Þ
.

13: if ρ̂k > η then
14: Set θkþ1 ¼ ~θkþ1 and Δkþ1 >Δk .
15: else
16: Set θkþ1 ¼ θk and Δkþ1 <Δk .
17: end if
18: Set k ¼ k þ 1.
19: end while
20: output: Terminal solution θk and terminal performance 

fðθkÞ � bE½Fðθk; ðX; YÞÞ�.

Algorithm 2 Post-Stratified Adaptive Sampling

1: Input: Available dataset X , iterate θk , TR radius Δk , minimum sample 
size λ0, and constant κ > 0.

2: Compute λk ¼ λ0ðlog kÞ1:5

3: Run λk i.i.d. simulations to obtain Fðθk; ðxj; yjÞÞ "j ¼ 1; 2; . . . ; λk . Set 
Nk ¼ λk .

4: Generate a stratification structure I k with Zk strata via Alg. 3 or Alg. 4.
5: Compute f̂postðθk;NkjI kÞ; cVarðf̂postðθk;NkjI kÞÞ with Nk ¼

PZk
z¼1 Nk;z 

using I k .
6: while

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cVarð̂f postðθk;NkjI kÞÞ

q

> κ Δ2
kffiffiffi
λk

p do

7: Take an i.i.d. sample and identify stratum z that it belongs to 
based on I k .

8: Set Nk;z ¼ Nk;z þ 1 and Nk ¼ Nk þ 1.
9: Update f̂zðθkÞ; f̂postðθk;NkjI kÞ; and cVarðf̂postðθk;NkjI kÞÞ.
10: end while
11: output: Sample size Nk and estimates 

f̂postðθk;NkjI kÞ; cVarð̂fpostðθk;NkjI kÞÞ.

4. Dynamic construction of strata

An important aspect of Algorithm 1 is determining the 
stratification structure I k. Constructing a stratification 
structure involves determining three things:

(i) number of strata,
(ii) stratification variable (when there are multiple 

input variables), and
(iii) strata boundaries (split values).

A fixed structure can be built if physics-based (i)–(iii) are 
known a priori. In many practices, these will not be known, 
and while asynchronous or static stratification still has an 
advantage for variance reduction, not getting (i)–(iii) right 
in implementation may barely benefit the optimization if 
not slowing it down (Jain et al., 2022). The question is, can 
we do better than selecting the strata without consideration 
for the local conditional behaviour of the objective func-
tion? Especially for heteroscedastic problems, fixed strata 
may not be optimal at every iteration as the conditional 
output distribution can greatly vary at different θ’s. 
Synchronous or dynamic stratification may thus be bene-
ficial in building the optimal strata for each θ that is 
evaluated during optimization if the computational cost 
of doing so is not too expensive.

Several methods have been proposed to build 
a dynamic structure via greedy search (Etoré et al., 2011; 
B. Liu et al., 2022; Pettersson & Krumscheid, 2021) that 
address (ii) and (iii) but assume there is always a fixed 
number of strata across iterations. More strata means more 
quantities that need to be estimated (mean and variance of 
each stratum). Obtaining maximal reduction in variance 
requires large samples in each stratum to accurately esti-
mate their statistics. For too many strata, the budget utili-
zation can thus be extremely high.

In this work, we propose two ways to determine the 
stratification structure by finding solutions to (i)–(iii) 
simultaneously such that 

We propose two methods for stratification: a greedy 
search with a new variant of binary trees enabling 
more complex strata, and a closed-form solution 
with only one stratification variable at a time but 
with applicable to either real or simulated data.

4.1. Stratification via binary trees

The first stratification method we present greedily 
divides the data with binary trees to minimize the 
estimated variance. The first step is to decide the 
stratification variable and the corresponding split 
point. Let z be the current leaf that is to be split 
and X1;X2; . . . ;Xp be the possible options for stra-
tification variable with Rngk;zðX

tÞ as the set of all 
possible values that the t-th variable can take in leaf 
z. Splitting value will divide leaf z into two candi-
date leaves defined for sets of (all not samples of) 
input data X k;z;lðt;xÞ ¼ fX 2 X k;z : Xt � xg and 
X k;z;rðt;xÞ ¼ fX 2 X k;z : Xt > xg to the left and right 
of the splitting criteria, respectively. We denote the 
sample size and the estimated variance in the left 
and right candidate leaf after splitting as 
Nk;z;lðt;xÞ;Nk;z;rðt;xÞ; σ̂2

k;z;lðt;xÞ, and σ̂2
k;z;rðt;xÞ, respectively. 
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Then, the optimal stratification variable and the corre-
sponding split point are determined by minimizing the 
variance of proportional allocation estimated after split-
ting, i.e.,  

In (8), weights Qk;z;lðt;xÞ ¼
Nk;z;lðt;xÞ

Nk
¼
jSk;z;lðt;xÞj

jSkj
and 

Qk;z;rðt;xÞ ¼
Nk;z;rðt;xÞ

Nk
¼
jSk;z;rðt;xÞj

jSkj
are used from samples 

collected so far (i.e., with jSkj ¼ λk pilot samples) in 
place of probabilities pk;z;lðt;xÞ ¼

jX k;z;lðt;xÞj

jXj
and 

pk;z;rðt;xÞ ¼
jX k;z;rðt;xÞj

jXj
because finding the probabilities 

using the entire available data for every possible 
x 2 Rngk;zðX

tÞ can be computationally expensive.
We denote the optimal left and right splits from solving 

(8) with l� and r�. This optimization can be solved sequen-
tially as the binary tree grows to provide an ultimate 
stratification via greedy search. The optimal stratification 
variable at each leaf can be different, and it depends on the 
current iterate θk and the set of points sampled during that 
iteration. The split variables and values X�k;z; x

�
k;z determine 

strata boundaries, which can change with θk and the 
sample size. Upon accepting a split, we update the indexing 
of the strata (leaves) by setting the index of the left candi-
date leaf as z and the index of the right candidate leaf as 
Zk þ 1 and finally incrementing the total strata by 1, i.e., 
Zk ¼ Zk þ 1. This means the old z-th leaf is now replaced 
with the left candidate leaf, and the right candidate leaf is 
added to the list of leaves and will not be considered for 
further splitting.

The next step is to determine when the algorithm 
should stop splitting the data or, in other words, the 
number of strata; each leaf of the tree will be a stratum 
at the end. One approach is to pre-select the maximum 
number of strata. Too many strata means many quan-
tities to be estimated, and too few strata can mean we 
lose substantial variance reduction. The best choice for 
Zk can differ from one iterate to another, and pre- 
selecting it is subjective. A natural solution can be 
cross-validation, whereby the prediction error that 
falls below a certain threshold would stop the stratifi-
cation process. The issues with this approach are cut-
ting the small sample of data used for constructing the 
tree even shorter to form cross-validation folds in 
addition to ad-hoc choice of the prediction error 
threshold, which could rely on problem-dependent 
hyperparameters. These issues can result in 
a suboptimal stratification structure, affecting the esti-
mates and the optimization process. Instead, we pre-
sent an approach that determines the necessity of 
splitting a leaf by assessing the extent of variance 
reduction achieved through the proposed split based 
on information gain (Quinlan, 1986).

Consider I k as the stratification structure built so far. 
Before splitting, we will collect a statistic from each leaf 
z ¼ 1; 2; � � � ;Zk. Let σ̂2

k ¼
dVarðf̂postðθk;NkjI kÞ be the 

estimated variance of the post-stratified estimator given 
the current structure I k, and the new variance of the post- 
stratified estimator if this leaf was selected for splitting 
using the criteria returned by (8) be evaluated as 

Note, we use true probabilities in (9) for correct esti-
mation of the reduced variance as they can be com-
puted using the whole data once the split point is 
known. Since the strata are non-overlapping, 
pk;z ¼ pk;z;l� þ pk;z;r� and Nk;z ¼ Nk;z;l� þ Nk;z;r� . We 
define 

as the proportion of variance reduced when node z is 
split. Now, the question is whether this reduction in 
variance is enough to split the node. To answer that, 
we define 

which can be viewed as the information gained by 
splitting the node z at θk. Assuming that the split 
leads to a reduction in the estimated variance, 
δkðzÞ 2 ð0; 1Þ, and hence the maximum theoretical 
value of GkðzÞ ¼ 1=e. This information gain value is 
computed for each leaf. Let Gprev

k be the gain from the 
most recent accepted split. Then, the leaf selected for 
splitting is the one that maximizes GkðzÞ subject to 
providing a gain that is at least as good as the previous 
gain Gprev

k , i.e.,  

The selected leaf is then indexed appropriately, and its 
gain updates the value of Gprev

k . If (11) has no feasible 
solutions, the splitting stops, and the tree and stratifi-
cation structure is finalized. We also use another 
hyperparameter (τ) common for binary trees that 
removes leaves with less than a certain number of 
data points sampled as shown in Algorithm 3. 
Generally, GkðzÞ is initially small, then it reaches the 
maximum value after the first few splits and starts 
reducing after that. The algorithm stops when GkðzÞ
is close to the maximum value because finding a split 
that results in more gain is difficult after that. Note, 
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another advantage of using the information gain strat-
egy for splitting is that we can select which of the 
leaves provides the best split rather than splitting 
leaves in the order of their indexing. 

Algorithm 3 Determining Strata (multi-D) using Binary Trees at Iteration k

1: Input: Current iterate θk , minimum leaf size threshold τ, and loss 
values computed at ðxj; yjÞ 2 Sk where jSkj ¼ λk .

2: Initialization:
3: Compute the first split by solving (8) to get X k;1;l� ;X k;1;r� and 

compute Gkð1Þ.
4: Set Gprev

k ¼ Gkð1Þ, X k;1 ¼ X k;1;l� and X k;2 ¼ X k;1;r� .
5: Set I k ¼ fX k;1;X k;2g, Sk;1 ¼ Sk;1;l� , and Sk;2 ¼ Sk;1;r� .
6: Set Zk ¼ 2 and update σ̂2

k following (5).
7: while true do
8: for z 2 f1; 2; . . . ; Zk : jSk;zj> 2τg do
9: Compute optimal split in z-th leaf by solving (8) to get 

X k;z;l� ;X k;z;r� .
10: If minfjSk;z;l� j; jSk;z;r� jg> τ, compute GkðzÞ via (10), else set 

GkðzÞ ¼ � 1.
11: end for
12: if there is an acceptable split, i.e., optimization (11) has a solution 

then
13: Set the leaf that solves (11) as zsplit and remove X k;zsplit from I k .
14: Set Gprev

k ¼ GkðzsplitÞ, X k;zsplit ¼ X k;zsplit;l� and 
X k;Zkþ1 ¼ X k;zsplit ;r� .

15: Set I k ¼ I k [ fX k;zsplit ;X k;Zkþ1g, Sk;zsplit ¼ Sk;zsplit ;l� , 
Sk;Zkþ1 ¼ Sk;zsplit ;r� .

16: Set Zk ¼ Zk þ 1 and update σ̂2
k following (5).

17: else
18: break
19: end if
20: end while
21: Output: Stratification structure I k with Zk many strata and samples 
fSk;zg

Zk
z¼1.

4.2. Stratification using concomitant variables

Trees can partition the input space with multiple vari-
ables simultaneously. Yet, their drawback is the greedy 
heuristic search that can have intense computation at 
every iteration and sensitivity to smaller subsets of λk 
pilot samples that estimate the leaf statistics. They are 
susceptible to producing less effective strata in the early 
iterations where the pilot run is small. They fall short of 
the attractive feature of asynchronous strata using large 
quantities of data (without running simulations).

We propose a second method to construct strata that 
will, to the extent possible, use large quantities of data while 
still enjoying dynamic stratification. To motivate this 
method, we review the two properties of an ideal stratifica-
tion variable. First, since the basis of stratification is con-
ditioning the simulation output, input variables are helpful 
given that their distributional behaviour can be inferred in 
each defined stratum without much burden. Second, 
a good stratification variable is one with a strong correla-
tion (linear dependence) with the simulated output. In fact, 
it is possible to derive closed-form boundaries for input 
variables with known or partially known distributions that 
are linearly dependent on the stochastic objective function 
values. Variables that are auxiliary to the stochastic objec-
tive function value and are generated during a simulation 
run can hence be used in service of variance reduction; we 
term these variables, the concomitant variables. 

Concomitant variables’ use for constructing strata bound-
aries is reminiscent of control variates and exploiting their 
linear dependence with the random output of interest 
(Wilson et al., 1984). Jain and Shashaani (2023) use the 
derived closed-form boundaries using optimal allocation 
for a queuing problem whose total cost one wishes to 
minimize. Simulated data considered for this purpose 
either have known distributions (service times) or 
unknown distributions (waiting times). In both cases, the 
amount of data is limited because it is what the simulation 
runs will generate, but the waiting time appears to be 
a better concomitant variable given its more direct linear 
relationship with the total cost.

In this paper, we extend this viewpoint (by using pro-
portional allocation instead of optimal allocation for stabi-
lity) to the data-driven calibration with two new 
considerations: a) besides the simulation-generated data, 
we have a vast amount of real (not simulated) input data 
that can be used rapidly without running simulations to 
construct the strata; and b) to choose among real or 
simulated variables the most linearly dependent with the 
objective function, we include a number of their nonlinear 
transformations as potential candidates to serve as the 
concomitant variable. If the concomitant variable is chosen 
to be among the real input data, then it would provide the 
same boundaries given a number of strata for any visited θ. 
But dynamic stratification will be due to the choice of the 
variable and the number of strata that can change from one 
iterate to another. We next describe different parts of the 
new approach, as laid out in Algorithm 4. 

Algorithm 4 Determining Strata (1-D) using Concomitant Variables at 
Iteration k

1: Input: Current iterate θk , maximum number of strata Zmax, loss 
computed at ðxj; yjÞ 2 Sk where jSkj ¼ λk , and thresholds ε¼ 10� 6 

and ρ¼ 10� 1.
2: Initialization: Collect candidate concomitant variables from linear/ 

nonlinear transformation of real or simulated data fC1
k ; C2

k ; . . . ; Cr
kg. 

Set Z ¼ 1.
3: for i ¼ 1; 2; . . . ; r do
4: Fit a weighted regression model Fðθk; ðX; YÞÞαi

k þ βi
k Ci

k þ Ei
k .

5: Estimate dVarðEi
kÞ and dCorrðCi

k; Ei
kÞ.

6: end for
7: Find Ck :¼ Ci�

k where 
i� ¼ arg mini¼1;2;...;rfdVarðEi

kÞ : jdCorrðCi
k; Ei

kÞj< ρg.
8: for Z ¼ 2; . . . ; Zmaxdo
9: if distribution of Ck is known then
10: Look up c1 < c2 < � � � < cZ� 1 and set c0 ¼ � 1; cZ ¼ 1.
11: else
12: Set c0 ¼ � 1; cZ ¼ 1 and c10 ; c20 ; � � � ; cZ� 1

0 as Z � 1 quantiles 
of data.

13: repeat
14: Set cz ¼ cz

0 "z ¼ 1; 2; . . . ; Z � 1.
15: Estimate μz ¼ E½Ckjcz� 1 � Ck < cz� "z ¼ 1; 2; . . . ; Z � 1.
16: Set cz

0 ¼ ðμz þ μzþ1Þ=2 "z ¼ 1; 2; . . . ; Z � 1.
17: untilk ðcz

0Þ
Z
z¼1 � ðczÞ

Z
z¼1 k� ε

18: end if
19: Set I k;Z ¼ fX k;zg

Z
z¼1, where X k;z ¼ fX : CkðXÞ 2 ½cz ; czþ1Þg.

20: end for
21: Determine Zk ¼ arg min

Z 2 ½2; Zmax�

cVar f̂ postðθk; λkjI k;ZÞ
� �

via 
bootstrapping.

22: output: concomitant variable Ck with Zk many strata and structure 
I k ¼ I k;Zk .

Boundaries on a concomitant variable: Suppose 
C ¼ CðXÞ is the concomitant variable used for 
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stratification – a linear/nonlinear transformation of 
a real variable in our dataset or a simulated variable 
generated alongside the simulated outputs of interest. 
Optimal stratification structure involves the 
boundaries 

that minimize the variance of the stratified sampling 
estimator to obtain the stratification structure I k. c0 
and cZk are the two extreme values for C, typically 
considered to be �1. Leveraging post-stratification, 
boundaries that minimize the variance can be derived 
using the following theorem:

Theorem 4.1 (Dalenius and Gurney (1951)Suppose 
the linear regression relation F ¼ αþ βC þ E holds 
with E½E� ¼ 0; Var ðEÞ ¼ σ2

E, and CovðC;EÞ ¼ 0. 
Suppose also that we have a total of n samples and 
want Z strata on C. Then, we can minimize the post- 
stratified estimator’s variance to order n� 1 by choos-
ing the strata boundaries  

While the closed-form equation (12) is recursive and 
appears complex, under known probability distribu-
tion of C, cz quantities can be exactly computed and 
are accessible in look-up tables for several distribu-
tions (Sethi, 1963). The standard normal case for C is 
relevant in simulation studies, providing good approx-
imations for standardized variables that are aggregated 
statistics common in many discrete-event models. If 
the concomitant variable has an unknown distribu-
tion, we can solve for the optimal boundaries using 
a (relatively fast) convergent fixed-point iterative 
method (Burden & Faires, 1989); see Step 12-Step 17 
in Algorithm 4 During these steps, if C is among the 
simulated data, then the conditional means are esti-
mated with λk � n pilot runs. Big data has less lever-
age in this case, similar to the binary tree approach. If 
C is among the real data, its conditional means can be 
approximated with rapid population statistics to com-
pute boundaries. In both cases, strata are exactly or 
approximately computed for a fixed number of strata.

Choosing the concomitant variable. During opti-
mization, there may be different variables at different 
iterations that provide the most linear relationship 
with the outputs, i.e., Ck such that 

where Ek is the stochastic residual satisfying the 
assumptions in Theorem 4.1. One can use transfor-
mations of the original real or simulated variables to 
find the desired linear relationship (either through 

some descriptive data analysis or by using expert 
knowledge about the model). In this paper, we pro-
pose gathering a list of transformed variables as 
candidates for the concomitant variable and fitting 
a weighted least squares linear regression model for 
each candidate; see Step 3–Step 7 in Algorithm 4 The 
weighted least squares regression is preferred over 
ordinary least squares to account for the outliers, 
heterogeneous variance, and the erratic behaviour 
of the simulations (Holland & Welsch, 1977). We 
choose a Ck that yields the smallest ratio of variance 
dVarðEkÞ=dVarðFkÞ; if the residual has a smaller var-
iance than the response, then inference about the 
mean of the residual will be more precise that the 
same inference about the mean of the response 
(Smith, 1991). Importantly, making an inference 
about the population by training a regression 
model using the samples has the risk of incorrectly 
estimating the regression coefficients αk; βk. The var-
iance of the residuals is independent of the stratifica-
tion structure yet affected by this erroneous 
estimation. We emphasize that these operations are 
relatively fast given the use of λk samples for fitting 
a whole bunch of regression lines. This is in contrast 
to the geometric number of operations in the binary 
tree to find the optimal stratification structure.

Choosing the number of strata. The last challenge 
is finding the number of strata. We decide the number 
of strata by determining Zk to find the lowest variance. 
In other words, if I k;Z denotes the stratification struc-
ture with Z strata, we find 

where Zmax is the user-defined upper limit on the 
number of strata; Cochran (1977) proves that 
Zmax ¼ 6 for regression models with R2 < 0:95. To 
evaluate the variance given Z strata, we use nboot boot-
straps of λk simulated data to evaluate the variance for 
each Z and identify one that consistently yields the 
smallest variance.

5. Experimental results

We compare the proposed stratification methods 
(BT and ConV) to the corresponding trust-region- 
based method without stratification (NS) and 
a number of widely used global optimization meth-
ods, including Bayesian Optimization (Frazier,  
2018), Simulated Annealing (Prudius & 
Andradóttir, 2012), and Random Search 
(Andradóttir, 2006). Our numerical analysis spans 
Monte Carlo examples with various variance struc-
tures (heterogeneity) and input dimensions, queu-
ing simulations, and a data-driven calibration case 
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study with real data from an offshore wind farm. 
In all of these problems, the objective (loss) func-
tion is the mean squared error (MSE) as in ERM 
cases (1), quantifying the discrepancy of the simu-
lated and observed data. By minimizing this MSE, 
we aim to calibrate the simulation model hðθ;XÞ by 
finding the optimal parameter value θ. Each solver 
is run 20 independent times (20 macroreplica-
tions), given a fixed computational budget, to 
obtain a distribution of the optimal calibrated 
parameter values, starting from the same initial 
point, θ0. In each macroreplication, common ran-
dom numbers (CRN) are used across solvers to 
enable reproducibility and sharper comparison. 
For BO, a combination of RBF and white kernel 
is used with expected improvement as the acquisi-
tion function. The RBF kernel is effective for build-
ing surrogate models in BO because it can 
approximate any function given enough data and 
is infinitely differentiable, ensuring that the surro-
gate model is very smooth. The scale parameter of 
the RBF kernel is tuned by maximizing the log- 
marginal likelihood. For NS, the initial sample size 
is set to 80 to scale adaptively based on the var-
iance of the estimates. In BT, we use the minimum 
leaf size threshold τ ¼ 5 while building the trees 
and for ConV, the maximum number of strata 
used is Zmax ¼ 4.

For the trust-region methods, we make compari-
sons from these large-scale experiments by reporting 
intermediate recommended solutions at different bud-
get points to track the optimization trajectory. Aligned 
with the SimOpt library platform (Eckman et al.,  
2023), we post-process these solutions; the objective 
function value at these intermediate solutions is esti-
mated using a validation set that is 30% of the total 
data sampled independent from the modeling set that 
generates the optimization trajectory. The post- 
estimated objective function values for each macro- 
replication of each solver are then aggregated to obtain 
the mean and 95% confidence intervals (CI) to obtain 
progress curves per expended budget.

We first present the results for some numerical 
examples in Section 5.1, followed by the results for 
queuing calibration in Section 5.2. In Section 5.3, we 
present the wind case study and present an in-depth 
analysis of the two stratification approaches. Finally, 
in Section 5.4, we discuss the scenarios in which each 
proposed method may perform better than the others.

5.1. Numerical examples: Static Monte Carlo 
simulations

To compare the proposed methods with the existing 
global search methods, we consider the following 
numerical examples with different characteristics:

(1) Example 1: Quadratic model with heterogeneous 
noise.
● Physical system: 

Y ¼ ðX1 � 2Þ2 þ ðX2 � 2Þ2 þ �, with 
�,Nð0; jX1X2 � 2jÞ.

● Computer model: 
hðθ;XÞ ¼ ðX1 � θÞ2 þ ðX2 � θÞ2.

(2) Example 2: Highly nonlinear model with homo-
geneous noise.
● Physical system: 

Y ¼ ðX1 � 2Þ7 þ ðX2 � 2Þ2 þ �, with 
�,Nð0; 1Þ.

● Computer model: 
hðθ;XÞ ¼ ðX1 � θÞ7 þ ðX2 � θÞ2.

(3) Example 3: Highly nonlinear model with homo-
geneous noise and significant difference in scale 
of one variable against another.
● Physical system: 

Y ¼ 1000ðX1 � 2Þ5 þ ðX2 � 2Þ2 þ �, with 
�,Nð0; 1Þ.

● Computer model: 
hðθ;XÞ ¼ 1000ðX1 � θÞ5 þ ðX2 � θÞ2.

(4) Example 4: Homogeneous noise with interaction 
terms.
● Physical system: Y ¼ 2X1X2 þ �, with 
�,Nð0; 1Þ.

● Computer model: hðθ;XÞ ¼ θX1X2.

In all the examples above, X ¼ ðX1;X2Þ where 
X1,Uð0; 4Þ, X2,Uð0; 4Þ, and the optimal parameter 
value θ� minimizes k hðθ;XÞ � Y k2

2. A dataset of 
1,000 data points in each macroreplication is gener-
ated and divided into modeling and validation sets 
with CRN. The optimal parameter for all the examples 
is 2, and the total budget for all solvers is 1,000 simula-
tion runs. Utilizing the entire dataset to evaluate the 
objective function for a single θ would exhaust the 
entire budget. Therefore, to enable a comparison 
with BO, instead of using the entire data for evaluation 
in each round, we chose a random sample of 50 points 
for each objective function evaluation. We use the 
same 50 samples in SA and RS as well. Additionally, 
in the BO implementation, given that the calibration 
parameter is one-dimensional, the initial surrogate 
model is built using a set of 10 randomly selected 
design points following the recommendation in 
Loeppky et al. (2009), which leads to 10 total BO 
iterations. SA and RS each ran for 20 iterations. For 
BT, X1 and X2 are considered for stratification. The set 
of potential concomitant variables considered for 
ConV are fX1;X2;X2

1 ;X2
2 ;X3

1 ;X3
2g. Since these conco-

mitant variables are chosen from raw data, the 
approach is denoted as ConV-R.

Figure 1 illustrates how the final solutions vary 
across the 20 independent runs for each algorithm. 
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Given the limited budget, BT and ConV-R consis-
tently identify the optimal parameter value with mini-
mal variability. In contrast, NS (the same adaptive 
solver but without stratification) and the global search 
methods exhibit high variability and sometimes fail to 
return near-optimal solutions. The high variability 
implies high risk of these solvers, in the sense that, 
even if the mean calibrated value is close to the opti-
mal parameter value, a single run of these solvers is 
more likely to produce a suboptimal solution com-
pared to the proposed approaches. While global meth-
ods are expected to converge to the optimal solution 
with a sufficient computational budget, this experi-
ment shows that the proposed methods can achieve 
near-optimality faster and more consistently.

Additionally, the local search method without stra-
tification is also prone to high variability or slow con-
vergence compared to the dynamically stratified BT 
and ConV. BT shows slightly less variability between 
the two proposed methods in Example 1 and better 
mean and variance in Example 2. This evidence sug-
gests that BT may be more robust in the presence of 
heterogeneous noise and more extreme nonlinearity. 
However, for the latter case, ConV may perform better 

with the additional pre-processing to nonlinearly 
transform X1 and X2.

5.2. Calibrating a queuing model: Discrete-event 
simulation example

In this example, we use calibration to determine the 
optimal interarrival rate in a simple M/M/1 queue 
given synthetic data comprising mean service time, 
mean waiting time, and mean sojourn time. We mini-
mize the discrepancy of the simulated mean waiting 
time hðθ;XÞ (using interarrival rate θ) and the 
observed mean waiting time Y .

The distinction of this example with the static 
simulations in the previous section is that for ConV 
method, here we can aggregate a sequence of random 
variables generated over time and apply Central Limit 
Theorem (CLT) via standardized mean service time 
and standardized mean sojourn time as potential con-
comitant variables (Wilson et al., 1984). The advan-
tage of this transformation is that the ConV method 
can leverage a lookup table for the optimal strata 
boundaries of the standardized variables (Jain & 

Figure 1. Distributions (box plots) of the calibrated parameter values from 20 independent runs of the algorithms in numerical 
examples. The red dot and the numerical value along each box display the mean value. BT and ConV perform similarly and better 
than other solvers in mean value and more concentrated distribution. BT exhibits less variability in examples 1 and 2.
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Shashaani, 2023; Sethi, 1963; Wilson et al., 1984) and 
bypass any additional computation (Step 12–Step 17 
in Algorithm 4). As a result, more precision and less 
clock-time computation in ConV method compared 
to the BT method may be achieved.

In the experiment, we use a synthetic dataset of 
10,000 observations. Each macroreplication starts at 
the same starting point θ0 ¼ 1:5 and has a total budget 
of 10,000 simulation runs; similar to the previous 
section, 30% of the dataset in each macro-replication 
is randomly held for post-processing. The length of 
the discrete-event queuing simulation is 200 with 
a warm up period of 50 to obtain a steady state. The 
service rate is 2, and the optimal interarrival rate (used 
to generate the waiting and sojourn times in the data-
set) is 1. The standardized mean service time and 
standardized mean sojourn time are utilized as strati-
fication variables for ConV-R. For BT, the mean ser-
vice time and mean sojourn time are used for 
stratification. While implementing BO, SA, and RS 
for comparison, a random sample of 200 points was 
used in each objective function evaluation.

Figure 2a illustrates the evolution of the objective 
function across 20 macroreplications as the percentage 
of expended simulation budget increases. The perfor-
mance of ConV-R is better than BT as it achieves 
a lower MSE with minimal variability across macro-
replications. This superior performance is anticipated, 
given that the asymptotic normality of the stratifica-
tion variables simplifies the implementation of ConV- 
R and allows for the use of exact strata boundaries 
derived from theoretical principles without relying on 
assumptions or error-prone estimations. Importantly, 
we observe in Figure 2b that the mean of optimal 
solutions recommended by BT is closer to the optimal 
parameter; however, the outlier optimal solutions (in 
the boxplot) and larger variability correspond to 

significantly worse objective function values, which is 
depicted by Figure 2a. The very small variability of the 
optimal loss values returned by ConV’s distribution of 
optimal solutions suggests that despite their variabil-
ity, they all yield similar small loss values. Another 
important observation from Figure 2b is the poor 
performance of other solvers, above all the NS (same 
adaptive solver but without stratification) in calibrat-
ing the queuing model.

5.3. Wind case study: Wake model calibration

Recall the example we started with in Section 1. The 
wake effect causes the wind speed reaching the down-
wind turbines to be less than the wind speed at the 
upwind turbines, affecting the power generated by 
these turbines (You, Byon, et al., 2017a, 2017b). Jensen 
wake model (Jensen, 1983) is a simple but widely used 
wake model extendable to a multi-turbine setting (Katic 
et al., 1986) that assumes that wake propagates linearly 
in the downwind direction, as shown in Figure 3. The 
value of the wake decay coefficient (θ in Figure 3) 
impacts the performance of the Jensen wake model. 
Though a value of θ ¼ 0:04 is widely assumed for off-
shore wind farms (Barthelmie et al., 2010; Katic et al.,  
1986), some recent studies have shown that this value 
does not necessarily depict the wind speed reduction 
observed in actual wind farms (Göçmen et al., 2016; 
You, Liu, et al., 2017b). Thus, it is essential to determine 
the value of this wake decay coefficient for each wind 
farm separately. The wake model simulates the wind 
speed at each turbine in the wind farm. The power 
curve for the turbines is generated via B-splines using 
the data at one of the upwind turbines (Lee et al., 2013; 
You, Liu, et al., 2017). This power curve is used to 
estimate the power generated at each turbine.

Figure 2. Comparison of the performance of solvers for the queuing model calibration.
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In our case study, data is collected from an offshore 
wind farm with 30+ turbines. The data includes infor-
mation about wind conditions, such as the 10-min 
average wind speed (WS) and direction, turbulence 
intensity (TI), etc. Along with this, it also consists of 
a 10-min average power generated by each turbine. In 
the analysis, the power generated by each turbine is 
normalized by dividing it by the maximum possible 
power that can be generated, referred to as nominal 
power (Byon et al., 2011). For a given combination of 
input wind condition X (WS, TI, etc.) and the wake 
decay coefficient θ, Jensen’s wake model estimates the 
power generated by turbines hðθ; XÞ. This simulated 
power is then compared to the observed power at 
turbines Y to get Fðθ; ðX;YÞÞ, the objective function 
value, the loss function measuring the discrepancy 
between observed power and model predicted ones.

5.3.1. Implementation
A modeling set comprising 70% data used for optimi-
zation is sampled independently for each macro- 
replication. Each macro-replication starts at the same 
initial point θ0 ¼ 0:1, the initial TR radius Δ0 ¼ 0:08 
and the minimum sample size λ0 ¼ 80, and runs for 
a total of 10,000 simulations (budget). In our first 
proposed approach, the input variables WS and TI 
are used as the stratification variables for dividing 
the data via binary trees (BT).

In our second proposed approach, two cases are 
considered for stratification with concomitant variables: 
using real data (ConV-R) or the simulated data (ConV- 
S). In the first method, we consider five alternatives to 
stratify the data using input WS and TI along with 
nonlinear transformations WS2, TI2, and WS3. With 
unknown joint probability distribution of TI and WS, 
the strata boundaries are determined by solving the 
iterative method using the population X . Based on the 
stratification boundaries, the real data is divided into 
non-overlapping sets X k;z; z ¼ 1; 2; . . . ;Zk, and the 
probabilities are pk;z ¼ jX k;zj=jXj. For a given θk, the 
Jensen model simulates the wind speeds reaching each 

turbine, providing the mean estimated wind speed at 
the turbines dWSk. The model also provides the simu-
lated power at each turbine using this simulated wind 
speed and the power curve. Thus, another possibility of 
a concomitant variable is the mean estimated power at 
the turbines ĥðθk;XÞ. For stratification using simulated 
data (ConV-S), we consider these two variables along 
with their nonlinear transformations dWS2

k; ĥ2ðθk;XÞ;
and dWS3

k. When using these simulated variables for 
stratification, the strata boundaries are determined by 
using the iterative method with λk points, and the 
probabilities are estimated as pk;z � λk;z=λk. For both 
ConV � R and ConV � S at each iteration, the variable 
with the lowest residual variance is chosen as the con-
comitant variable. Thus, we do not choose 
a concomitant variable a priori; the algorithm identifies 
it adaptively.

5.3.2. Results
Figure 4a compares how the expected progress varies 
during optimization for the no stratification case (NS) 
and the solvers with dynamic stratification all under 
ASTRO-DF optimization algorithm. The main advan-
tage of using the proposed stratified adaptive methods 
is a significant improvement in performance initially 
to reach better solutions. All of the three proposed 
approaches provide comparable results. BT and 
ConV-R exhibit more similar performance, which is 
interesting given that ConV-R uses only one variable at 
a time for stratification. Another observation is that 
they both reach better solutions compared to ConV-S, 
which is expected as ConV-S builds the stratification 
structure with a small sample of noisy simulated data. 
The second advantage is depicted by Figure 5a-c 
where the 95% CI widths of BT, ConV-R, and ConV- 
S are smaller, indicating reduced variability or uncer-
tainty (risk) in the performance of the optimization 
algorithm.

Figure 4b compares the performance of BT and 
ConV against the global search algorithms (BO, SA, 
and RS) and the non-stratified version of the adaptive 
local solver (NS). The stratification methods show 
much lower variability. Although the mean calibrated 
parameter values for BT and ConV are similar, BT 
exhibits more variability (larger interquartile range

Recall that ConV-R and ConV-S dynamically identify 
the best concomitant variable throughout iterations. 
Table 1 summarizes the mean frequency with which 
a concomitant variable is chosen for the baseline case 
θ0 ¼ 0:1;Δ0 ¼ 0:08, and λ0 ¼ 80. For ConV-R, TI and 
its squared transformation are often picked for stratifi-
cation. In the literature, the wake decay coefficient has 
been shown to correlate well with TI (Barthelmie et al.,  
2015; Duc et al., 2019; Peña et al., 2016). Thus, consis-
tently choosing TI by the algorithm indicates that it is 
aptly choosing the best stratification variable. In ConV- 

Figure 3. Linear propagation of wake as modeled by the 
Jensen wake model, where rr is the rotor radius and u0 is the 
free-stream wind speed (excerpted from Jensen (1983)).
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S, the mean of the squared simulated power at each 
turbine is chosen almost every time. The loss function is 
mathematically more correlated with ĥ2ðθk;XÞ than 
any other variable. Hence, choosing it consistently 
again indicates that the proposed method can deter-
mine the best stratification variable.

Figures 6 and 7 show how the stratification struc-
ture changes during optimization when using BT 
and ConV-R, respectively. Unlike stratification with 
concomitant variables, binary trees can divide the 
data based on multiple variables (TI and WS), as 
shown in Figure 6a-c. While computationally more 
intensive, this method is more flexible in choosing 

the stratification variable and deciding the number 
of strata. Recall that in BT, real data corresponding 
to λk pilot simulations is used for stratification, and 
in ConV-R, the entire data is used for stratification. 
If the number of strata and the stratification variable 
are the same, ConV-R will generate the same struc-
ture irrespective of θk as seen in Figure 7 where the 
strata design for θk ¼ 0:100 and θk ¼ 0:049 is the 
same. However, the number of strata and the strati-
fication variable depends on θk, which makes the 
stratification dynamic in ConV-R. Additionally, the 
choices for the stratification structure throughout 
the optimization are finite (for each possible 

Figure 5. Variability and risk (95% CI progress curves) of proposed approaches (BT, ConV-r, and ConV-s) is reduced compared to 
no-stratification (NS), computed over 20 macro-replications.

Table 1. Mean frequency with which a particular variable is picked for stratification across 20 macro-replications. Note that 
these values are for θ0 ¼ 0:1;Δ0 ¼ 0:08, and λ0 ¼ 80. The distribution can change with the changes in these initial 
settings (the value in the parenthesis is the standard error).

ConV-R Variables WS TI WS2 TI2 WS3

Frequency 0.05(0.05) 11.20(2.36) 0.35(0.30) 24.50(3.48) 3.00(1.55)

ConV-S Variables cWS2
k ĥðθk; XÞ cWS2

k ĥ2ðθk; XÞ cWS3
k

Frequency 2.00(1.05) 0.30(0.22) 0.20(0.14) 32.50(2.51) 1.10(0.45)

Figure 4. Comparison of the performance of solvers for the wake model calibration. BT and ConV perform better than the global 
solvers.
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concomitant variable and each possible number of 
strata), which can reduce the run-to-run variability 
of the algorithm compared to other cases where 
there may be virtually infinite choices for the strati-
fication structure.

Next, we compare the robustness of the proposed 
methods with a Box-Wilson Central Composite Design 
(CCD). A CCD provides enough information to estimate 
the main effects and interactions with significantly fewer 
designs than a full-factorial design (Hill & Hunter, 1966). 
We test the proposed methods’ sensitivity by varying the 
algorithm’s three most critical hyperparameters, θ0;Δ0;

and λ0. Considering θ0 ¼ 0:1;Δ0 ¼ 0:08, and λ0 ¼ 80 
as the baseline case, the robustness is analysed by fixing 
two parameters and perturbing the third between two 
relatively extreme values. We consider the following 
parameter values for the analysis: θ0 ¼ f0:02; 0:2g, 
Δ0 ¼ f0:04; 0:16g, and λ0 ¼ f40; 80g. Detailed hyper-
parameter tuning is beyond the scope of this paper; the 
ranges selected are reasonable for each parameter in the 
context of this problem and the objective of this sensitivity 
analysis study is to examine whether the performance of 
the proposed algorithms would significantly vary for dif-
ferent starting conditions. Figure 8 depicts the error bars 
of each solver’s terminal objective function values 
obtained from 20 macro-replications, considering var-
ious designs. In summary, efficient dynamic stratification 
diminishes the reliance of TR algorithms on hyperpara-
meters, enhancing their robustness.

Figure 8a investigates the influence of initial solu-
tion θ0 on the performance of the solvers. With 
a favourable starting point, θ0 ¼ 0:02 (where we spec-
ulate that the objective function is at a steep region), 
the performance across all cases is about the same. 
This observation aligns with expectations, as the 
proximity of the starting point to the true optimum 
allows the algorithms to reach the optimal solution 
with minimal exploration. Conversely, for θ0 ¼ 0:2, 
where the starting point is considerably far from the 
true optimum and at a more flat region, NS exhibits 
significantly worse performance than using dynamic 
strata, highlighting that changing strata effectively can 
lead to robust exploration and, thus, better 
performance.

Figure 8b illustrates the effect of the initial TR 
radius, Δ0. A larger Δ0 facilitates early exploration 
and demands that the solvers execute efficient exploi-
tation. Failure to accomplish this may lead to the 
algorithm becoming trapped in a suboptimal region. 
This is particularly evident in the case of NS, where its 
performance deteriorates with increasing Δ0. In con-
trast, dynamic strata enhance early exploitation to 
a certain degree, enabling the solvers to attain 
improved solutions. Stratification with concomitant 
variables shows some sensitivity to the initial TR 
radius, degrading their performance for larger Δ0 
values. The enhanced flexibility provided by BT, 
allowing the selection of multiple stratification 

Figure 6. Evolution of the stratification structure, within BT, during optimization for a single macro-replication after approximately 
0%, 50%, and 100% budget is utilized. The points denote the actual data.

Figure 7. Evolution of the stratification structure, within ConV-r, during optimization for a single macro-replication after 
approximately 0%, 50%, and 100% budget is utilized. The points denote the actual data.
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variables simultaneously, may contribute to improved 
early exploitation, potentially explaining its perfor-
mance for Δ0 ¼ 0:16.

Figure 8c demonstrates how the initial sample size, 
λ0, influences the solver’s performance. A small λ0 
allows the algorithm more budget for exploration but 
can lead to imprecise estimates and, consequently, poor 
exploitation. As λ0 increases, the performance of all 
solvers generally improves, but for a limited budget 
setting, a large λ0 may not be preferable. Stratified 
sampling becomes crucial in this context as it provides 
more accurate estimates for smaller sample sizes. This 
capability allows solvers employing dynamic stratified 
sampling to outperform others, even when λ0 is small.

5.4. Discussion

While adaptive sampling in NS efficiently allocates 
the simulation budget for each θ based on its uncon-
ditional output variance and proximity to optimal-
ity, stratified sampling further enhances efficiency 
by reducing output variance with conditioning and 
allowing the sample size stopping conditions to be 
met earlier. The effectiveness of stratified sampling 
depends on the stratification structure, which opti-
mally partitions the input space to minimize output 
variance. Since output variance structure can signif-
icantly vary from one system (calibration parameter) 
to another – heteroscedasticity (with respect to θ), 
the proposed dynamically stratified adaptive sam-
pling procedure aims to learn about the local var-
iance structure of the output to maximize efficiency. 
Any optimal budget allocation during optimization 
can enhance exploitation by improving estimation 
error with fewer samples (simulation runs) at each 
evaluation. Thrifty exploitation ensures ample bud-
get is saved for exploration and allows the algorithm 
to run for more iterations. Therefore, a dynamically 
stratified adaptive sampling procedure increases the 
solver’s ability to more thoroughly explore the deci-
sion space.

In our experiments, the benefit of stratification 
is evident across all examples, consistently outper-
forming the non-stratified approach and the global 
solvers, as the recommended parameter values 
using dynamically stratified adaptive sampling are 
almost always closer to the true optimal and more 
consistent (less risky) across independent solver 
runs. Such advantages are notable, especially 
because the stratification procedure is not very 
time-consuming as the additional time needed for 
stratification is negligible compared to each simu-
lation run. For example, in our queuing experi-
ments, the average clock time to solve with NS 
(no stratification) was 142.0 s, while that of the 
BT and ConV solvers was 146.1 and 147.8 s, 
respectively. The rewards in finite-time solution 
performance easily justifies the added ,4%

increase in clock time. The computational overhead 
for stratification becomes more negligible when the 
simulation runtime is longer, such as wind power 
simulation.

Which dynamic stratification method should one 
choose? The answer to this question is contingent 
upon the structural characteristics of the problem. 
We highlight the following observations that can aid 
in incorporating these dynamically stratified adaptive 
sampling procedures within a solver:

(i) While in most cases the two approaches per-
form similarly, Example 2 in Section 5.1 sug-
gests that BT may perform better than ConV 
in extreme nonlinearity or interactions 
(dependencies) in input variables.

(ii) For ConV to work well in these situations, 
additional pre-processing to find a good non-
linear transformation of the input variables 
may be necessary. This is because ConV relies 
on a linear mapping between what it will use as 
the concomitant variable and the objective 
(loss) function value F. At the minimum, the 
squared transformations of the input variables 
should be considered in calibration problems 

Figure 8. Effect of different hyperparameters on the performance of the solvers. Implementing stratification reduces the 
algorithm’s dependence on the choice of the hyperparameters (baseline setting: θ0 ¼ 0:1;Δ0 ¼ 0:08; and λ0 ¼ 80).
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with MSE-like loss functions. How to find 
more linearly related concomitant variables 
inexpensively and whether that effort may be 
worthwhile is an open research question.

(iii) ConV has another restriction in only choosing 
one variable to stratify each time. At the time of 
writing this paper, we are unsure of whether that 
restriction necessarily translates to a weakness 
since in more extensive experimentation that 
we did not include in this paper, ConV per-
formed competitively with BT for higher- 
dimensional and more inter-dependent input 
spaces or cases where multiple stratification vari-
ables held significance. An explanation for this 
observation may be that by the parsimony prin-
ciples (Goloboff, 2003), finding the single input 
variable that is the major contributor to hetero-
geneity of output variance in the input space for 
a fixed θ may be sufficient and less prone to 
statistical errors and biases when forming the 
strata. This point is visible in the wind power 
calibration case study in Figure 4b, where the 
BT boxplot of optimal solutions is wider com-
pared to ConV and we see in Figure 6 that BT 
sometimes stratifies with more than one input 
variable.

(iv) Our sensitivity analysis with real data suggests 
that BT can have a slightly more robust perfor-
mance compared to ConV with respect to the 
solver’s starting conditions (initial solution, mini-
mum sample size, initial step size); yet a more 
extensive experimental design to make a general 
judgement on sensitivity is left for future 
research.

(v) ConV becomes efficient when the distribution 
of the stratification variable is either known or 
can be approximated, as seen in Section 5.2 
where the distribution of standardized mean 
service time and the standardized mean sojourn 
time can be approximated. For most of the 
time-dependent simulations, it is easy to use 
CLT to approximate the distribution of vari-
ables, and for these cases, stratification with 
concomitant variables can be very effective.

(vi) In using ConV, if the concomitant variables are 
chosen from the real (not simulated) input data, 
establishing strata requires minimal computa-
tion. More importantly, using all of the real data 
does not affect the simulation budget and sig-
nificantly reduces the inherent noise when sta-
tistics from each strata is used to estimate the 
objective function or the sample size.

6. Conclusion

In data-driven calibration, the presence of abundant 
data with many covariates can help match the model 

outputs and observed outputs by tuning the model 
parameters. To reduce computation, using subsamples 
of data makes the problem stochastic and apt for simu-
lation optimization, in which a vast amount of joint 
information can aid using stratified sampling to reduce 
estimation error at each visited calibration parameter. 
However, stratified sampling within simulation optimi-
zation is challenging. We propose using post- 
stratification to lower the instability of sampling distri-
butions throughout the optimization. This stability 
enables a more tailored design of strata that, if done at 
a low cost, has the potential to save exploitation sam-
pling efforts for more exploration in the search.

We further propose two ways for dynamic stratifica-
tion. The first approach determines strata boundaries by 
hierarchically dividing the data using binary trees that are 
grown only until enough information can be gained. This 
approach may be computationally expensive but is flex-
ible as it can concurrently use multiple-stratification vari-
ables. In the second approach, concomitant variables help 
form strata. If these variables exhibit a positive correlation 
with the simulation output, they can be employed to 
establish optimal strata boundaries through closed-form 
equations. Using pilot simulation runs, we propose meth-
ods to find the best concomitant variables (that can be 
nonlinear transformations of real inputs or generated 
data during each simulation run) and the number of 
strata for this purpose. However, the strata can be formed 
with less dependence on limited runs and less computa-
tion by leveraging population statistics or looking up 
exact values by studentizing variables that store aggre-
gated information. A comparison case study on the real- 
world data for a wind power model calibration and some 
static and time-dependent simulation examples illustrates 
faster progress and less run-to-run solver variability. 
Effective stratification further reduces the solver’s reliance 
on hyperparameters, making it more robust.

While both approaches show similar performance in 
many cases, choosing one approach over the other hinges 
on the nature of the relationship between stratification 
variables and the simulation output, the significance of 
multiple stratification variables, the availability of infor-
mation regarding the distribution of these variables, and 
the presence of noise in simulations. As a rule of thumb, 
if there is evidence for heterogeneous noise and non-
linear relationships that may take time to unravel, then 
binary trees may be more beneficial. On the other hand, 
if, from expert opinion or descriptive analysis, we can 
find or form a concomitant variable that is linearly 
dependent on the response, it may single-handedly help 
partition the input space to tackle heteroscedasticity at 
a low computational cost. Among choices for concomi-
tant variables, choosing the real data instead of simulated 
data may be more effective, particularly when simulation 
outputs are too noisy.

The present study centres on minimizing variance, 
which is the goal of stratified sampling in estimation 
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and inference. However, in optimization, variance 
may only need to be reduced so much to help with 
the progress. In other words, the cost of maximal 
variance reduction may waste too much of the com-
putational budget. Therefore, future work will view 
stratified sampling for optimization with a different 
objective in mind: making better local approximations 
that guarantee just enough accuracy to economize 
budget expenditure in the early iterations. 
Particularly for a class of adaptive simulation optimi-
zation solvers, this road-map can lead to proven lower 
sample complexity that can be fundamental to the 
theory and application of simulation optimization 
solvers for digital twins (Goodwin et al., 2022; Santos 
et al., 2022). Deriving closed-form equations for 
simultaneously utilizing multiple concomitant vari-
ables for stratification is also an unexplored area for 
future research. Furthermore, stratification with con-
comitant variables requires pre-processing to identify 
the appropriate function of the concomitant variable 
that has a linear relationship with the output. This 
aspect is left for future research.
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