
Strata Design for Variance Reduction in
Stochastic Simulation

Jaeshin Park and Eunshin Byon*

Department of Industrial and Operations Engineering,
University of Michigan, Ann Arbor, MI 48109

and
Young Myoung Ko�

Department of Industrial and Management Engineering,
Pohang University of Science and Technology,
Pohang, Gyeongbuk 37673, Republic of Korea

and
Sara Shashaani �

Department of Industrial and Systems Engineering,
North Carolina State University, Raleigh, NC 27695

Abstract

Stratified sampling is one of the powerful variance reduction methods for ana-
lyzing system performance, such as reliability, with stochastic simulation. It divides
the input space into disjoint subsets, called strata, to draw samples from each stra-
tum. Partitioning the input space properly and allocating greater computational
effort to crucial strata can help accurately estimate system performance with a lim-
ited computational budget. How to create strata, however, has yet to be thoroughly
examined. Strata design faces the curse of dimensionality and data scarcity as the
input dimension increases. We analytically derive the optimal stratification structure
that minimizes the estimation variance for univariate problems. Further, reconcil-
ing the optimal stratification into decision trees, we devise a robust algorithm for
multi-dimensional problems. Numerical experiments and a wind turbine case study
demonstrate the superiority of the proposed method in terms of variance reduction,
leading to computational efficiency and scalability.

Keywords: Monte Carlo simulation, reliability, stratified sampling, variance reduction
*This work was supported in part by the National Science Foundation (grant no.: CMMI- 2226348)
�This work was supported in part by the National Research Foundation of Korea (NRF) grant funded

by the Korean government (MSIT) (grant no. NRF-2021R1A2C1094699 and NRF-2021R1A4A1031019)
�This work was supported in part by the National Science Foundation (grant no.: CMMI- 2226347)

1



1 Introduction

The design or operation of physical or social systems has benefited from the widespread

use of stochastic simulation as a mathematical modeling and analytical tool (Wycoff et al.,

2022). Stochastic simulation is useful for estimating system performance, especially when

observational data are insufficient or unavailable. With increasing computing power, mod-

ern computer models employed in simulations offer a better understanding of stochastic

system behavior under various input conditions.

Stochastic simulation research generally falls into two main categories: Monte Carlo

sampling (MCS)-based and surrogate modeling-based approaches. Studies in surrogate

modeling focus on approximating the underlying response surface across the input space

to predict responses at unseen data points within the input domain. For example, in the

Gaussian Process (GP), one of the most popular methods for surrogate modeling, there is

an emphasis on leveraging the correlation between data points to estimate the response at

unseen inputs, accompanied by the uncertainty quantification capability.

On the other hand, MCS methods are designed to estimate the overall statistical prop-

erties of the response variable. MCS methods generate a series of input vectors and use

each to run a computer model, producing corresponding simulated outputs. They rely

on the data samples to approximate the response variable’s distribution without requiring

assumptions about correlations among responses, as each sample is considered independent

of the others. The critical assumption here is the independence of the simulated outputs,

which is intrinsic to the MCS approach. When using MCS to estimate system performance,

the estimation variance gets reduced with an increased computational budget. However,

2



even with a limited budget, one can still decrease the estimation variance through a class

of techniques known as variance reduction techniques. Among various variance reduction

techniques, importance sampling (IS) has been widely studied in the literature (Nedder-

meyer, 2009), with its vulnerability to the curse of dimensionality being notable even for

an input dimension of three or more (Cao and Choe, 2019).

This study focuses on the use of stratified sampling in stochastic simulation, which is

another variance reduction method that enhances computational efficiency. Stratified sam-

pling divides the input space into multiple disjoint regions, or strata, and draws random

samples from each one. The approach follows a specific rule for allocating the total sam-

ple size–or budget–among the strata, ensuring that the estimator remains unbiased. By

targeting more samples from strategically important strata, stratified sampling can sub-

stantially improve estimation accuracy. However, the computational efficiency of stratified

sampling depends on both the design of the strata–how the input domain is divided–and

the allocation of the budget across these strata–deciding how many samples to take from

each one, when the strata design is not previously known.

This study devises new algorithms for designing strata that effectively lead to signifi-

cant reductions in estimation variance. Our approach adheres to the parsimonious principle

that most physical or social systems are governed by a small number of key input variables.

By identifying and utilizing these critical variables to stratify the input space, our method

aims to ensure that each stratum displays a homogeneous response pattern. Specifically, we

first derive the analytical solution for finding splitting locations that minimize the estima-

tion variance in univariate problems. We then leverage this analytical insight as a guiding

3



principle to determine influential splitting variables and their partitioning points for multi-

variate problems. For the scalable strata design, we recursively partition the input domain

and develop a binary decision tree. We further offer guidelines for determining the strata

size to ensure the robustness of our stratification approach. We call the proposed approach

Optimization-guided and Tree-based Stratified Sampling, or OptiTreeStrat for short. Our

numerical experiments, which include synthetic examples and a wind turbine case study,

confirm that our method effectively reduces the estimation variance through effective strata

design.

In the remainder of the paper, Section 2 reviews relevant studies. Section 3 presents the

proposed methodology. Sections 4 and 5 implement the approach with synthetic numerical

examples and the wind turbine case study, respectively. Finally, Section 6 concludes.

2 Literature Review

2.1 Stratification

Several studies investigated finding a stratification structure for improving simulation effi-

ciency. Tipton (2013) constructed strata using clustering analysis based on the closeness

between observations of multivariate input variables. Etoré et al. (2011) devised an ana-

lytical procedure when input variables obey the Gaussian distribution, where the estimate

of the objective function gradient sequentially updates the stratification direction. This

approach may be less scalable and converge slowly when the input dimension is large and

the response surface is complex because it is based on first-order optimization.

4



Some studies have explored methods for determining an appropriate stratification strat-

egy. Cochran (1977) utilized linear regression to estimate a lower bound of variance for

a given number of strata in survey sampling. While this approach assists in deciding the

strata size, the linearity assumption could be unrealistic in many problems, and it addresses

univariate inputs. Further, stratification is solely made based on the input distribution,

constructing equi-probable strata that overlook the input-output relationship. Recently,

Pettersson and Krumscheid (2022) presented an adaptive stratified sampling method, re-

sembling batch sequential designs. Their approach constructs strata through successive

equi-probable bi-partitions. As a new batch of data is collected, an equi-probable split for

each input variable is contemplated across all existing strata. The specific stratum and in-

put variable that offer the most substantial variance reduction are then selected for further

partitioning. Although this approach accommodates multi-dimensional inputs, its reliance

on equi-probable partitioning might not always be efficient. Particularly, if the initial

divisions are poorly made, such inefficiencies can accumulate in subsequent partitions.

Shields (2016) combined Latin hypercube sampling (LHS) with stratified sampling by

establishing strata boundaries based on LHS stratification. This stratification method may

be less effective as it relies on the distribution of input variables and does not exploit

how the output reacts to different inputs. Mease and Bingham (2006) proposed Latin

hyperrectangle sampling that allows unequal probabilities of the strata. They assume

the output variance within each stratum is proportional to the cell size, which may not

necessarily hold in many applications.

Another approach involves the use of control variables which may consist of either a

5



subset of input variables or response variables different from the output of interest (Can-

namela et al., 2008). By employing low dimensional control variables, it can reduce the

problem’s dimensionality. However, finding a suitable choice of control variables may be

difficult or even unattainable in some circumstances.

In summary, existing approaches in stratified sampling either do not fully exploit the

problem structure or make strong assumptions. Additionally, determining the strata size

with multivariate inputs remains an area that has not been comprehensively explored.

2.2 Other variance reduction techniques

In the literature, sequential design approaches have been studied for the estimation of failure

probabilities in deterministic computational models. These methodologies predominantly

hinge on the utilization of surrogate models—most notably, GP —which iteratively refine

the surrogate model with the acquisition of incremental data samples. Bect et al. (2012)

devised a new acquisition function tailored to accommodate the uncertainties in failure

probability estimations for choosing next design points. Cole et al. (2023) proposed a

new acquisition function, called the Entropy-based Contour Locator (ECL), to adaptively

update the GP. They subsequently utilized the refined GP within the framework of IS as

an instrumental density function. In these sequential designs, the computational burden

of constructing and updating the GP rapidly increases as the sample size increases. High-

dimensional input spaces further intensify this challenge, increasing the time required for

GP updates and complicating the optimization of the acquisition function.

While the majority of IS research has focused on deterministic computer models that

6



produce fixed output for a specific input (Neddermeyer, 2009; Kurtz and Song, 2013),

Choe et al. (2015) derived the optimal IS density, referred to as stochastic IS (SIS), for

stochastic computer models. Due to the unknown quantity within the optimal density,

the direct application of SIS is not straightforward. Cao and Choe (2019) employed Cross

Entropy (CE) as a metric to approximate the optimal SIS density, a method termed CE-

SIS. The CE-SIS’s efficiency dramatically declines with three or more input variables. Li

et al. (2021) addressed the challenges inherent in multivariate input settings, particularly

when there is significant interaction between input variables, through the application of a

Weighted Additive Multiplicative Kernel (Lee et al., 2015). This approach, referred to as

WAMK-SIS, has been shown to achieve notable variance reduction—superior to that of CE-

SIS—especially in cases where the input dimensions range from three to four. Nonetheless,

as the input dimension grows, WAMK-SIS still faces challenges posed by the curse of

dimensionality, because it constructs a bivariate kernel for each pair of input variables.

Although surrogate-based sequential designs and IS techniques have demonstrated sig-

nificant potential for variance reduction, their application has been largely limited to small

datasets or low-dimensional problems. Our study bridges this gap by providing both ana-

lytical and practical solutions that can be applied to more complex problems.

3 Methodology

This section discusses the proposed OptiTreeStrat method.

7



3.1 Problem Description

We consider a black box computer model that generates the output Y ∈ R1 at input

X ∈ D ⊆ Rd. In stratified sampling, the domain D of input X is divided into multiple

disjoint regions Ωi’s for i = 1, 2, · · · , I such that D = ∪iΩi. Strata are a collection of Ωi’s

in this context. We consider hyperrectangular stratification (Pettersson and Krumscheid,

2022). Let pi = P (X ∈ Ωi) denote the probability that X belongs to the ith stratum Ωi.

Here, pi can be obtained from the pdf f(·) of X by computing
∫
Ωi

f(x)dx, assuming that

f(·) is known. In case where f(·) is not predefined, with the assumption that ample data

related to the input variables is accessible, pi can be estimated by the ratio of the available

data that fall into Ωi. We are interested in estimating the expectation of a function of Y .

Let Z denote a quantity of interest, i.e., Z = w(Y ). For instance, in reliability analysis,

we can set Z = I(Y > l) to estimate the failure probability E(Z) = P (Y > l), where I(·)

denotes an indicator function and l is a resistance level.

Let us consider the stochastic computer model. Stochastic simulation with stochastic

computer models often involves a two-level scheme (Choe et al., 2018), where the first level

selects inputs and the second entails running the computer model to generate stochastic

outputs. This approach unavoidably raises the ‘exploration vs replication’ trade-off. Ko

and Byon (2022) investigate this issue by contrasting two IS estimators: one that employs

replication for more thorough exploitation of important regions and another that focuses

exclusively on exploration by running the model only once per input. While Binois et al.

(2019) showed that replication can be beneficial in the context of GP surrogate modeling,

Ko and Byon (2022) suggest that the exploration-focused estimator without replicates

8



is more advantageous in SIS due to its robustness against sample size rounding errors

that might occur in implementing optimal allocation, as well as potential inaccuracies in

surrogate models that are sometimes used in SIS. From this perspective, our study also

employs an estimator that avoids the replicates at each input.

Suppose we draw ni inputs of Xij for j = 1, 2, · · · , ni at the ith stratum for i = 1, · · · , I.

Let Zij denote an output obtained at Xij. The stratified sampling estimator for E(Z) can

be obtained from the conditional (or local) mean of each stratum as follows:

Ê(Z)SS =
I∑

i=1

pi
ni

ni∑
j=1

Zij, (1)

which is an unbiased estimator of E(Z) for ni > 0, ∀i. Its variance is

Var(Ê(Z)SS) =
I∑

i=1

p2i
n2
i

Var

(
ni∑
j=1

Zij

)
=

I∑
i=1

p2i
σ2
i

ni

, (2)

where σ2
i = Var(Zij|Xij ∈ Ωi) is the conditional (or local) variance of the response, given

that the input belongs to the ith stratum Ωi.

When the cost of drawing a sample is the same across strata, given the stratification

structure {Ωi}Ii=1, the following budget allocation

n∗
i = n

piσi∑I
i=1 piσi

(3)

minimizes the variance of Ê(Z)SS in (2) (Cochran, 1977). This rule allocates a larger budget

to Ωi, where pi is large, or when the simulation output changes greatly over Ωi. While pi

can be obtained from f(·), the conditional variance σ2
i cannot be computed because the

conditional distribution of the response is typically unknown due to the black box nature

of the computer model and thus, it needs to be estimated, e.g., using sample variance.

9



When strata are not pre-specified, designing these strata to achieve the maximum vari-

ance reduction is yet to be decided. Tying the optimal budget allocation in (3) with strata

design together, Var(Ê(Z)SS) in (2) becomes

Var(Ê(Z)SS,opt) =
I∑

i=1

p2i
σ2
i

n∗
i

=
1

n

(
I∑

i=1

piσi

)2

. (4)

Minimizing (4) is equivalent to minimizing
∑I

i=1 piσi. The focus of this study is to design

the strata, i.e., to decide the strata size I∗ and the corresponding set of strata {Ω∗
i }Ii=1 as

I∗,Ω∗
1, · · · ,Ω∗

I∗ = argmin
{I,Ω1,··· ,ΩI}

I∑
i=1

piσi. (5)

Searching for {Ω∗
i }I

∗
i=1 provides an important implication. The optimal strata design re-

quires minimizing the within-stratum variance σ2
i . That is, a desirable design would have a

similar (or homogeneous) response pattern within each stratum, leading to small local vari-

ance σ2
i , ∀i. To illustrate, consider the univariate input case where one wants to estimate

the exceedance probability E(Z) = P (Y > l) =
∫
P (Y > l|x)f(x)dx with the conditional

variance σ2
i = P (Y > l|X ∈ Ωi)(1 − P (Y > l|X ∈ Ωi)). Figure 1 depicts scatter plots

with various strata choices. In the left figure, where an equi-distant design is used, the

conditional variances (in particular, σ2
2 and σ2

3) could be substantially high because simu-

lation outputs larger than l are mixed with those smaller than l within each stratum. In

the middle design, the first two strata include more similar responses above and below l,

respectively, representing a more effective design. When we subdivide the third stratum

into finer strata in the last design, we can further reduce the within-stratum local variance.

While we can be easily tempted to increase the strata size, there should be a right strata

size because the budget for each stratum is an integer and we need to estimate σ2
i .

10



Figure 1: Different strata designs. The dotted vertical lines represent strata boundaries

and the horizontal black line denotes the resistance level l.

It should be noted that the optimal strata design can be attained only when the re-

sponse pattern over the input domain, e.g., E[Z|X] and E[Z2|X], is known. Due to the

black-box nature of computer models, one cannot exactly know these quantities. How-

ever, we can utilize domain knowledge or take small-scale pilot samples to approximate

them. Assuming we can estimate E[Z|X] and E[Z2|X], we first analytically derive the

stratification structure to minimize the estimation variance, given the number of strata I,

for univariate problems and extend the result for multivariate problems. Additionally, we

would like to highlight that budget allocation and strata design are seamlessly decoupled.

Once the optimal stratification is obtained by solving (5), we can allocate computational

budgets using (3). Hence, we focus on strata design in the next section.

3.2 Univariate stratified sampling

Consider a univariate problem with X ∈ R with the ith stratum defined as Ωi = (ai−1, ai]

for i = 1, 2, . . . , I, with a0 = −∞ and aI = +∞. If we obtain the optimal strata design

{Ω}Ii=1, given I, the optimal strata size I∗ can be obtained by comparing the variance of the

11



optimal strata for each I. In (4), pi and σi depend on strata boundaries. Hence, obtaining

the optimal partitions in (5) is equivalent to finding {ai}I−1
i=1 . Let h(x) and t(x), respectively,

denote the conditional expectations of the response and squared response, given x, i.e.,

h(x) = E(Z|X = x) and t(x) = E(Z2|X = x). Theorem 1 provides the analytical solution

for designing the strata, given I. The proof is available in the supplementary document.

Theorem 1 Let X ∈ R denote a univariate input variable following a known density f(x).

Let Z denote a function of simulation output Y , i.e., Z = w(Y ) = w(g(X)), where g(X)

is a stochastic computer model. Assume that h(x), t(x), and f(x) are integrable. Given a

strata size I, the optimal boundaries {a∗i }I−1
i=1 that minimize Var(Ê(Z)SS,opt) in (4) satisfy

(t(ai) + si)− 2h(ai)µi

σi

=
(t(ai) + si+1)− 2h(ai)µi+1

σi+1

, (6)

for i = 1, 2, · · · , I − 1 with µi =
1
pi

∫ ai
ai−1

h(x)f(x)dx representing the conditional mean of

the ith stratum, si =
1
pi

∫ ai
ai−1

t(x)f(x)dx representing the conditional second moment of the

ith stratum, and pi =
∫ ai
ai−1

f(x)dx.

Applying the result in Theorem 1 involves additional considerations. First, due to the

unknown conditional density of Y given X = x, each term in (6) needs to be estimated.

We can approximate h(x) and t(x) using data collected in a pilot run by adopting ade-

quate regression techniques such as spline and kernel regression. Then µi, si and σi can be

estimated with numerical integration. Another difficulty is that µi, si, and σi are functions

of ai and ai−1, which may not take closed-forms. Thus, one cannot immediately find the

equation’s root. To address these issues, we obtain ai’s iteratively, similar to the procedure

12



in Mease and Bingham (2006). Note that (6) can be rewritten as

0 = t(ai)(ki − ki+1)− 2h(ai)(kiµi − ki+1µi+1) + (kisi − ki+1si+1), (7)

with ki =
1
σi
. Suppose we have ai’s obtained in the previous iteration. With these, we

calculate µi, si, and ki. Consequently, given µi, si, and ki, the right-hand side (RHS)

of (7) becomes a function of ai’s, represented through h(a) and t(a). Lacking a closed-

form solution for ai, we rely on numerical approximation, specifically employing a root-

finding algorithm. We use the uniroot() function available in R, following the methodology

described in Brent (1971).

Algorithm 1 summarizes the procedure. We approximate h(a) and t(a) with their re-

spective surrogates ĥ(a) and t̂(a) using statistical methods in Line #2. While any regression

techniques can be used, we use kernel regression (Nadaraya, 1964) in our implementation.

Specifically, we obtain ĥ(x) and t̂(x) by

ĥ(x) =

∑n
j=1K(

x−Xj

h
)Zj∑n

j=1K(
x−Xj

h
)
, t̂(x) =

∑n
j=1K(

x−Xj

h
)Z2

j∑n
j=1 K(

x−Xj

h
)

, (8)

where (Xj, Zj) is the jth sample data for j = 1, 2, . . . , n, K(·) is a univariate kernel function

and h denotes the bandwidth. We use the Gaussian kernel and decide the bandwidth by

optimizing the asymptotic mean integrated squared error (Li et al., 2021). In Line #3

of Algorithm 1, we stop the iteration when the splitting points at the tth iteration are

sufficiently close to the previous iteration’s splitting points.

In the failure probability estimation with Z = I(Y > l), h(x) and t(x) become equal,

both denoting the conditional failure probability at x, i.e., h(x) = t(x) = P (Y > l|X = x).

It allows us to simplify (6), as shown in Corollary 1.

13



Algorithm 1 Univariate strata design in stochastic simulations

1: Input: number of strata I. Pilot samples (Xj, Yj), Xj ∈ R, Yj ∈ R for j = 1, · · · , n0,

where n0 is the pilot sample size.

2: Initialization: Set the iteration number t = 0. Initialize the splitting points a(0) =

(a
(0)
1 , · · · , a(0)I−1). Approximate h(x) and t(x) with pilot samples to get ĥ(x) and t̂(x).

3: while convergence criterion is not satisfied do

4: Obtain pi, µi, si, ki using the current splitting points a(t).

5: Solve (7) using a root-finding algorithm.

6: update a(t+1) ← a(t).

7: set t← t+ 1

8: end while

9: Estimate σ2
i with sample variance for all Ωi = (ai−1, ai], i = 1, 2, . . . , I

10: Obtain n∗
i using (3).

11: Output: a∗ = (a
(t)
1 , · · · , a(t)I−1), n

∗ = (n∗
1, · · · , n∗

I).

Corollary 1 Let X ∈ R denote a univariate input variable following a known density

f(x). Consider Z = I(g(X) > l) where g(X) is a stochastic computer model. Assume that

h(x) and f(x) are integrable. Given a strata size I, the optimal boundaries {a∗i }I−1
i=1 that

minimize Var(Ê(Z)SS,opt) in (4) satisfy

h(ai) =
oioi+1

oioi+1 + 1
, (9)

for i = 1, · · · , I − 1, where h(x) = P (Y > l|X = x) and oi =
√
µi/(1− µi) with µi =

1
pi

∫ ai
ai−1

h(x)f(x)dx and pi =
∫ ai
ai−1

f(x)dx.

The result in (9) shows that h(ai) at the optimal ai only depends on the adjacent strata’s

14



conditional means. In addition, the range of h(ai) is between 0 and 1, which aligns with

the fact that h(ai) denotes the conditional failure probability at X = ai.

Next, Theorem 2 below provides the analytical solution for designing the strata for

deterministic computer models.

Theorem 2 Let X ∈ R denote a univariate input variable following a known density f(x).

Let Z denote a function of simulation output Y , i.e., Z = w(Y ) = w(g(X)), where g(X) is

a deterministic computer model. Assume that w(x), g(x), and f(x) are integrable. Given

a strata size I, the optimal boundaries {a∗i }I−1
i=1 that minimize Var(Ê(Z)SS,opt) in (4) satisfy

(w(g(ai))
2 + si)− 2w(g(ai))µi

σi

=
(w(g(ai))

2 + si+1)− 2w(g(ai))µi+1

σi+1

, (10)

for i = 1, 2, · · · , I−1 with µi =
1
pi

∫ ai
ai−1

w(g(x))f(x)dx representing the conditional mean of

the ith stratum, si =
1
pi

∫ ai
ai−1

w(g(x))2f(x)dx representing the conditional second moment

of the ith stratum, and pi =
∫ ai
ai−1

f(x)dx.

The result of Theorem 2 is a special case of Theorem 1. For a deterministic com-

puter model, we have h(x) = E(Z|X = x) = E(w(g(X))|X = x) = w(g(x)) and

t(x) = E(Z2|X = x) = E(w(g(X))2|X = x) = w(g(x))2, because there is no random-

ness inside the computer model. Plugging these h(x) and t(x) into (6), we obtain (10).

3.3 Multivariate stratified sampling

Multivariate stratified sampling is prone to the curse of dimensionality, making it challeng-

ing to develop an effective strata design. The analytical approach presented in the previous

section requires numerical integration over input variables, which grows computationally

15



costly and becomes numerically unstable or even intractable as the input dimension in-

creases. Additionally, data sparsity may be a problem in estimating the terms in (6) when

some strata have few data points.

Nevertheless, the analytical findings for the univariate case set the stage for successfully

building strata with multivariate inputs. We note that the well-known parsimonious prin-

ciple is present in many social, scientific, and engineering problems. It encourages us to use

those crucial variables while dividing the input space, if they can be discovered. To achieve

this goal, our strategy is to recursively identify the most crucial variable and segment the

input domain one at a time and repeat the procedure. Our idea is similar to constructing

a decision tree such as a classification and regression tree (CART) (James et al., 2013).

Consider a binary tree where the strata are determined by the tree’s terminal nodes. To

build a tree, we use a greedy approach to select the best terminal node in the current

tree, along with the best splitting variable and its partitioning point, that achieves the

maximum variance reduction. Our approach, while similar to CART, contains a number

of unique elements because of the distinct features of stratified sampling and our efforts to

best utilize the analytical results obtained for the univariate context. It also decides the

strata design {Ωi}Ii=1 and strata size in an integrated way.

3.3.1 Recursive strata expansion

Suppose we have d input variables X ∈ Rd. Let us consider the ith terminal node in the

current tree, with Ωi standing for its associated stratum. We grow a tree by subdividing

it in hyperplane and adding two children nodes whose domains are specified by a splitting

16



variable and its splitting point with their associated two children strata. We choose the

splitting variable and its partitioning point based on how much variance they can reduce.

Recall that our objective function for the variance minimization problem is reduced to∑
i piσi as shown in (5). Among all possible input variables and their splitting points

within Ωi, we get the splitting variable and its partitioning point as

X i
s∗ , a

i
s∗ = argmin

Xs,ais s=1,...,d

[
pi,l(Xs, a

i
s)σi,l(Xs, a

i
s) + pi,r(Xs, a

i
s)σi,r(Xs, a

i
s)
]
, (11)

where pi,l(·) and pi,r(·) are the probability of inputs belonging to Ωi,l(Xs, a
i
s) = {X|Xs ≤

ais,X ∈ Ωi} and Ωi,r(Xs, a
i
s) = {X|Xs > ais,X ∈ Ωi}, respectively, and σi,l(·) and σi,r(·)

denote the corresponding conditional standard deviations of the response.

To illustrate, let us consider a 3-dimensional problem shown in Figure 2. At the ith node,

we consider potential splits based on each of the three variables. For a split on variable Xs,

we obtain the splitting point ais using Theorem 1. We then evaluate the combined variance

of the resulting left and right child nodes as [pi,l(Xs, a
i
s)σi,l(Xs, a

i
s) + pi,r(Xs, a

i
s)σi,r(Xs, a

i
s)]

for each variable. After examining all three variables, we select the variable that minimizes

this combined variance measure, e.g., X3 as illustrated in Figure 2.

Here, the key element is that the analytical procedure discussed in Section 3.2 is adopted

to find the splitting point ais∗ in (11). Specifically, we employ the result in Theorem 1 with

I = 2 to obtain ais for each input Xs for s = 1, · · · , d. Then we choose the best variable X i
s∗

and its splitting point ais∗ for terminal node i. We apply this procedure to each terminal

node and identify the terminal node that results in the greatest variance reduction when

it is branched. Suppose the tree currently consists of T terminal nodes. We determine the

node to further subdivide, tying together with its splitting variable and partitioning point,

17



Possible splits Objective function comparison

X1 < ai1 X1 ≥ ai1
pi,l(X1, a

i
1)σi,l(X1, a

i
1)+ pi,r(X1, a

i
1)σi,r(X1, a

i
1) = 0.20

X2 < ai2 X2 ≥ ai2
pi,l(X2, a

i
2)σi,l(X2, a

i
2)+ pi,r(X2, a

i
2)σi,r(X2, a

i
2) = 0.52

X3 < ai3 X3 ≥ ai3
pi,l(X3, a

i
3)σi,l(X3, a

i
3)+ pi,r(X3, a

i
3)σi,r(X3, a

i
3) = 0.15

Figure 2: Selection of a splitting variable in the ith node

that achieves the minimum estimation variance as follows.

i∗ = argmin
i

[
T∑

i′=1,i′ ̸=i

pi′σi′ + min
Xs,ais

[
pi,l(Xs, a

i
s)σi,l(Xs, a

i
s) + pi,r(Xs, a

i
s)σi,r(Xs, a

i
s)
]]

. (12)

3.3.2 Determination of strata size

Now we discuss how to decide the strata size I. Theoretically, we can achieve a greater

variance reduction with a larger tree (Pettersson and Krumscheid, 2022). However, this is

the case when σi’s are exactly known, and the optimal budget distributions across strata

just so happen to be positive integers. In practice, σi’s must be estimated with data, and

the allocations in (3) are frequently rounded. The estimation accuracy would decline as

the tree size increases because fewer samples are taken from each stratum (terminal node).

As a result, we must stop growing a tree when the variance reduction is barely noticeable.

18



Choosing the appropriate strata size is analogous to deciding the tree size in CART (Liu

et al., 2022). However, there are a few vital differences. In CART, a tree is typically fully

grown until each terminal node contains the minimum required number of samples prior to

applying a pruning procedure. However, growing a whole tree could incur non-negligible

computational overhead in stratified sampling where computational efficiency is important

because we need to solve the univariate design problem for each variable at each terminal

node. Thus, we stop growing the tree when the reduced variance obtained by adding two

more children nodes becomes negligible in comparison to the variance obtained by the tree

so far (up to the point of splitting), i.e., when the following reduction rate (RR) falls below

a predetermined threshold, e.g., 0.05, denoted by lRR.

RR =
pi∗σi∗ − (pi∗,l(X

i∗
s∗ , a

i∗
s∗)σi∗,l(X

i∗
s∗ , a

i∗
s∗) + pi∗,r(X

i∗
s∗ , a

i∗
s∗)σi∗,r(X

i∗
s∗ , a

i∗
s∗))∑T

i=1 piσi

, (13)

where the numerator implies the amount of reduction when the tree grows by splitting the

node i∗, which is determined in (12), and T is the current tree size.

Once we construct a sufficiently large tree, we prune it to avoid overfitting. We use the

following complexity cost, which seeks to balance variance reduction with tree complexity,

similar to the complexity parameter in CART (James et al., 2013):

Cα(Ω
′) =

∑
i∈V (Ω′)

piσi + α|Ω′|, (14)

for a subtree Ω′ in 

′, where 
′ indicates a set of all possible subtrees, |Ω′| is the number of

terminal nodes in Ω′, V (·) denotes the set of terminal nodes and α is a tuning parameter.

Given α, we identify the subtree Ωα that produces the smallest Cα(·). Finding a good

strata size requires making an adequate choice of α. Suppose that we consider M different

19



α’s and for each α, we get the best subtree Ωα. A commonly used approach to decide

α is assessing the performance of Ωα with validation sets. However, blindly employing

the traditional validation approach can lead to incorrect selection of α in the context of

stratified sampling. Consider M candidate subtrees, each decided from M choices of α’s.

To evaluate the performance of each subtree, samples need to be chosen based on the

optimal allocation rule in (3). Thus, M different validation sets should be constructed to

evaluate the subtree structure Ωα, which increases computational overheads substantially

because computer models should generate the necessary data.

To alleviate the computational burden, we modify the original validation set with re-

sampling. When the data has been split into a training set and a validation set, we utilize

the training set to build a suitably sized tree using the reduction rate in (13). Then, for

each subtree, we resample data from the validation set according to the subtree’s optimal

allocation rule, compute the total variance of the subtree with that resample, and choose α

with the smallest variance. Since the same samples can be taken, our resampling strategy

might not totally solve the overfitting problem, but it avoids excessive computing overhead

while determining the right strata size using a separate validation set.

Algorithm 2 provides a summary of the steps for determining the strata design with

multivariate inputs in the OptiTreeStrat approach. The procedure can be generalized to

5-fold (or 10-fold) cross-validation with resampling but at the expense of increased com-

putation. Additionally, the process for determining the tree size is illustrated in Figure 3.

Consider the initial tree in the upper panel, obtained from Phase 1. During Phase 2, we

evaluate three candidate subtrees and select the optimal subtree through a validation pro-

20



cedure. Specifically, for each α, we identify the candidate subtree Ωα that exhibits the

lowest cost-complexity Cα(Ω
′) among the three subtrees (Step 1 of Phase 2 in Figure 3,

corresponding to line 11 in Algorithm 2). Subsequently, we perform resampling within the

validation set, where the sample sizes for each node are defined by the optimal allocation in

(3) for each candidate subtree (Step 2 of Phase 2 in Figure 3, corresponding to lines 12-15

in Algorithm 2). Finally, we determine the appropriate α and its corresponding subtree,

which together yield the minimal objective function value (Step 3 of Phase 2 in Figure 3,

corresponding to line 17 in Algorithm 2).

Note that in line 15 of Algorithm 2, computing pi could be challenging if the ith stra-

tum Ωi spans multiple interdependent variables. However, our strategy, inspired by the

parsimonious principle, would identity the important variables and focuses on stratifying

the input space based upon them. Thus, the computation of pi becomes manageable and

maintains high accuracy. Further investigation will be needed to address high-dimensional

situations for which the parsimonious principle does not apply.

4 Numerical Examples

4.1 Problem Setting

We implement OptiTreeStrat with three numerical examples that represent stochastic com-

puter models with the following data-generating structures (Li et al., 2021).

Xm ∼ N(0, Im), Ym|Xm ∼ N(µm(Xm), 1),

21



Algorithm 2 Multivariate strata design in OptiTreeStrat

1: Input: Pilot samples (Xj, Yj),Xj ∈ Rd, Yj ∈ R for j = 1, · · · , n0, where n0 is the pilot

sample size, the tree size threshold lRR, a set of pruning parameters A = {α1, · · · , αM},

reconstructed validation set size nB.

2: Initialization: Divide the pilot dataset into training and validation sets. Set 

′
, 


′
A
,

Ωbranch, Ωleft, and Ωright as empty sets. Set RR = 1 and Ω = D.

Phase 1: Obtaining a suitably-sized strata with training set:

3: while RR ≥ lRR do

4: Update Ω← {Ω\ { Ωbranch }} ∪ {Ωleft,Ωright } and 

′ ← 


′ ∪Ω.

5: for i = 1, · · · , |Ω| do

6: Get X i
s∗ and ais∗ by solving (11) using Algorithm 1 with I = 2 for s = 1, · · · , d,

7: end for

8: Solve (12) to get i∗ and calculate RR in (13)

9: Set Ωbranch = Ωi∗ , Ω
left = Ωi∗,l(X

i∗
s∗ , a

i∗
s∗), and Ωright = Ωi∗,r(X

i∗
s∗ , a

i∗
s∗)

10: end while

Phase 2: Finding the best strata with validation set:

11: For each α ∈ A, find Ωα that minimizes Cα(Ω
′
) in (14), ∀Ω′ ∈ 


′
and 


′
A
← 


′
A
∪Ωα.

12: for Ωα ∈ 

′
A
do

13: Obtain n∗
i in (3) for i = 1, · · · , |Ωα| with n = nB.

14: Resample data from the validation set to generate n∗
i samples.

15: Obtain pi and σ̂i from resampled data and compute Uα =
∑

i piσ̂i.

16: end for

17: Output: Ω∗
α = argminΩα∈


′
A

Uα

22



Phase 1: Creating suitably sized strata with training data

Phase 2

Step 1: Choosing the best subtree

for each α with training data

Step 2: Resampling in validation data

according to allocation rule in (3)

Step 3: Choosing

the best tree

Subtree (Ω
′
)

Complexity cost

(Cα(Ω
′
))

Objective function (Uα) Best tree (Ω∗
α)

α1

0.22

0.20

0.19 0.22

α2

0.24

0.23 0.17
Choosing as

the best tree

0.25

Figure 3: Illustration to determine the tree size.

for m = 1, 2, 3, where m corresponds to an example index with X1 = (X1, X2, X3),

X2 = (X1, X2, X3, X4), X3 = (X1, X2, · · · , X10), and Im indicates an identity matrix.

23



The conditional mean of Y , given X, of each example is as follows.

µ1(X1) = 65− 40e−0.2
√

(X2
1+X2

2 )/2 − 20e−0.2|X1| − 5e−0.2
√

(X2
2+X2

3 )/2

−
∑

1≤i<j≤3

ecos(2πXiXj) − ecos(2πX1X2X3)

µ2(X2) = 65− 40e−0.2
√

(X2
1+X2

2 )/2 − 20e−0.2|X1| − 5e−0.2
√

(X2
2+X2

3+X2
4 )/3 −

∑
1≤i<j≤3

ecos(2πXiXj)

µ3(X3) = 65− 40e−0.2
√

(X2
1+X2

2 )/2 − 20e−0.2|X1| − 5e−0.2
√

(X2
2+X2

3 )/2

− 0.1(e−0.2
√

(X2
4+X2

5 )/2 + e−0.2
√

(X2
6+X2

7 )/2 + e−0.2
√

(X2
8+X2

9+X2
10)/3)−

∑
1≤i<j≤3

ecos(2πXiXj)

In all examples, X1 is the most significant input variable and X2 comes next, whereas

other variables are less significant. We are interested in estimating the failure probability

P (Y > l), with l = 17.9, 18.9, and 18.74, respectively, for Examples 1, 2, and 3. These

resistance levels roughly correspond to the failure probability level Pt = 0.01.

To implement the proposed OptiTreeStrat, we first draw pilot samples. Conclusive

theoretical results to determine the appropriate pilot sample size have not been established

yet in the literature. From a wide range of experiments, we derive an empirical rule

for determining the required pilot sample size n0 for the failure probability estimation as

n0 ≈ 10
√

d(1− Pt)/Pt. Noting that the coefficient of variation (CoV) of crude Monte Carlo

(CMC) estimator with n0 samples is
√
(1− Pt)/(n0Pt), this rule suggests that a larger pilot

sample size is necessary when the estimator’s CoV increases. In our implementation, based

on the rule, we draw 170, 200, and 340 pilot samples using the orthogonal array-based LHS

(abbreviated as OA-LHS) in each example. The detailed explanation of how to construct

the OA in OA-LHS can be found in the supplementary document. Applying this rule in

24



practical settings would require careful consideration, as Pt is typically unknown prior to

the analysis. In situations where even a rough guess of Pt is unavailable, an alternative

approach is to iteratively increase the pilot sample size until certain criteria, such as sample

CoV, are satisfied (Liu et al., 2022). Please refer to the supplementary material for more

details about deciding the pilot size.

We consider several benchmark methods, including stratified sampling with equi-distanced

strata design (Equi-SS), CMC, and WAMK-SIS (Li et al., 2021), as well as the approach

in Pettersson and Krumscheid (2022), termed Adaptive-SS. The Equi-SS divides the range

of each input into two evenly-spaced intervals. CMC draws samples from the original input

distribution f(x). Additionally, we consider LHS and its variants, including rank-based

LHS (hereafter, referred to as rank LHS) (Stein, 1987) and OA-LHS (Tang, 1993). We use

the same seed for implementing these competing methods in each experiment.

We use the 1, 200 total computation budgets in all approaches, including pilot samples.

In OptiTreeStrat and WAMK-SIS, the rest of the budget–after allocating the pilot budget–

is distributed evenly across five iterations to implement batch sequential design. For more

discussion on deciding the batch size and number of batches, please refer to the supplemen-

tary material. In computing the failure probability, we exclude pilot samples because they

are primarily intended for initial learning rather than for minimizing estimation variance,

similar to the approach in Li et al. (2021).

25



4.2 Implementation Results

The results from 100 experiments are summarized in Table 1. Given the computational

resources, Equi-SS could not solve Example 3, since some strata lack sufficient data with

extensive strata size 210. Adaptive-SS does not achieve a substantial variance reduction

over CMC, because it relies on an equi-probable split, leading to an ineffective stratification.

Consequently, this inhibits the method’s ability to target key regions that are critical for

variance reduction. The three LHS methods demonstrate enhanced variance reduction ca-

pabilities when compared to Equi-SS, CMC, and Adaptive-SS. Nonetheless, they generally

underperform relative to OptiTreeStrat.

As an illustration, Figure 4 depicts the final stratification structure realized in one of

our experiments for Example 1. Our approach uses the most important variable X1 as the

splitting variable in most cases, resulting in an efficient estimator with a smaller SE. Ad-

ditionally, the left plot of Figure 5 tracks the SE of 100 failure probability estimates across

five different sample sizes (or batches). In the case of OA-LHS, sampling is conducted using

an OA of a size similar to each sample size. The right box plot presents the distribution of

failure probability estimates derived from 100 experiments. Our method generally shows

the smallest SEs and interquartile ranges across all examples. Similar figures for Examples

2 and 3 are provided in the supplementary document.

We would like to comment on the computational efficiency of WAMK-SIS. Even though

it generates reasonably good performance, its computational cost increases quickly as the

input dimension increases. With d input variables, it constructs d(d − 1)/2 bivariate ker-

nels. The computation required to obtain all kernel bandwidths with large d increases

26



Table 1: Comparison results from 100 experiments to estimate the failure probability (note:

∗ marking indicates a statistically significant difference at the 5% significance level in the

F-test, compared to OptiTreeStrat.)

Example 1 Example 2 Example 3

Mean SE Mean SE Mean SE

OptiTreeStrat 0.0099 0.0015 0.0103 0.0021 0.0100 0.0013

Equi-SS 0.0096 0.0030∗ 0.0102 0.0036∗ NA NA

CMC 0.0099 0.0026∗ 0.0101 0.0027∗ 0.0106 0.0029∗

Adaptive-SS 0.0096 0.0026∗ 0.0092 0.0029∗ 0.0101 0.0029∗

LHS 0.0102 0.0023∗ 0.0104 0.0020 0.0102 0.0021∗

Rank-LHS 0.0102 0.0022∗ 0.0100 0.0021 0.0102 0.0021∗

OA-LHS 0.0100 0.0019∗ 0.0095 0.0020 0.0103 0.0022∗

WAMK-SIS 0.0101 0.0017 0.0106 0.0022 0.0097 0.0024∗

Root
node

X1 ≤ -0.292 X1 > -0.292

X1 ≤ -1.71 X1 > -1.71 X1 ≤ 1.39 X1 > 1.39

Figure 4: Example of stratification structures in Example 1.

27



0.
00

0
0.

00
2

0.
00

4
0.

00
6

Sample Size

S
ta

nd
ar

d 
E

rr
or

400 600 800 1000 1200

O
pt

iT
re

e 
S

tr
at

E
qu

i−
S

S

C
M

C

A
da

pt
iv

e−
S

S

LH
S

R
an

k−
LH

S

O
A

−
LH

S

W
A

M
K

−
S

IS

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Fa
ilu

re
 p

ro
ba

bi
lit

y

OptiTree Strat
LHS

Equi−SS
Rank−LHS

CMC
OA−LHS

Adaptive_SS
WAMK_SIS

Figure 5: Comparison results of Example 1 from 100 experiments. Left: SE across five

different sample sizes marked by solid circles. Right: box plots of failure probability esti-

mates

significantly. On the contrary, in our approach, even though we employ nonparametric

regression to approximate h(x) and t(x) for each input, we do so with a univariate kernel,

which increases the computational overhead linearly. In Examples 1 and 2, for example,

WAMK-SIS takes two to three times longer than OptiTreeStrat. With ten variables in

Example 3, WAMK-SIS takes six times longer. The increased efficiency and the reduced

computational cost of our method are further underscored by a comparative analysis against

the sequential design strategy known as ECL, as introduced in Cole et al. (2023). The ECL

method’s execution time extends over several days, which is significantly longer by an order

of magnitude than that required by our approach. More detailed results are included in

the supplementary document.

28



Additionally, we assess the method’s effectiveness across a broad spectrum of scenar-

ios, including various computational budgets, diverse input distributions, high-dimensional

case, heterogeneous variance, multi-modal response, and various response types. In most

cases, our approach demonstrates superior performance over benchmark methods. Com-

prehensive comparison results are provided in the supplementary material.

5 Wind turbine case study

5.1 Problem setting

We conduct a case study for evaluating wind turbine reliability with the National Re-

newable Energy Laboratory (NREL)’s aeroelastic stochastic computer models, including

TurbSim (Jonkman, 2009) and FAST (Jonkman et al., 2005). Given the input wind con-

dition, Turbsim and FAST generate stochastic load responses in blades, towers, and other

locations. One of the significant load responses is the 10-minute maximum tip deflection,

so we employ it as the output variable Y in our study (Li et al., 2021; Choe et al., 2016).

Based on the international design standard (International Electrotechnical Commission,

2005) and literature, we consider five input variables. First, to describe wind speed V , we

utilize a truncated Rayleigh distribution with a scale parameter of 10
√

2/π on the interval

of [3, 25] (m/s), as recommended in Moriarty (2008). Next, for turbulence intensity TI,

we use the Normal Turbulence Model Class B, which is one of the most commonly used

models (Jonkman, 2009). We assume that TI follows a log-normal distribution as TI|V ∼

Lognormal

(
log

(
µ2
TI(V )√

µ2
TI(V )+σ2

TI

)
, log

(
1 +

σ2
TI

µ2
TI(V )

))
with µTI(V ) = 0.14(0.75V +5.6)/V and

29



σTI = 0.05. Similarly, the wind shear S, given V , is assumed to follow the lognormal

distribution as S|V ∼ N(µS(V ), σ2
S(V )) with µS(V ) = 2.63 × 10−4V 3 − 1.09 × 10−2V 2 +

1.285× 10−1V − 1.32× 10−1 and σS(V ) = 7.767× 10−5V 3− 3.43× 10−3V 2+3.4× 10−2V −

1.3× 10−1 (Li et al., 2021; Ding, 2019).

For a vertical angle V A of the wind, the TurbSim user’s guide suggests using a small

vertical angle and not exceeding 45◦ to avoid generating unusual values (Jonkman, 2009).

In this study, we use the truncated normal distribution with a zero mean and variance

9 within the interval [-10,10]. Lastly, the density of surface roughness length SR is also

assumed to obey the truncated normal distribution with its mean 0.03 (the default value

in TurbSim), and a small variance 10−6 over [0.01, 0.05].

5.2 Implementation results

We consider two input settings—one with the first three variables (V, TI, and S) and

another with five variables (V, TI, S, V A, and SR). The first setting is the same as in Li

et al. (2021), where V A and SR are fixed at their mean values. We evaluate P (Y > l),

the probability of tip deflection exceeding a threshold l = 2.45. We consider a total

computation budget of 2,600. We draw 170 and 240 pilot samples for each setting. The

remaining budget is then evenly allocated across 10 iterations.

We investigate OptiTreeStrat’s strata design. Figure 6 provides scatter plots of the

tip deflection vs each input variable (left) and stratification construction (right), using the

samples collected in previous iterations. We apply OptiTreeStrat to obtain the stratification

structure, as shown in the right panel. The scatter plots in the left panel illustrate the

30



samples within each stratum corresponding to the white branching node in the right panel.

Specifically, each of the first, second, and third columns is the scatter plot of wind speed

vs response, turbulence intensity vs response, and wind shear vs response. Each vertical

line indicates the splitting value of the respective input variable.

The input domain is first partitioned with the wind speed at V = 12.1 m/s, because,

at wind speeds less than 12.1 m/s, most responses are less than l. The solid line in the top

left sub-figure illustrates that wind speed is selected as the first splitting variable. Between

the two child nodes of V ≤ 12.1 and V > 12.1 (the two nodes in the second row of the

right plot), the high-wind speed node (V > 12.1) is chosen. The second split is obtained

with TI = 0.25, as shown in the middle sub-figure of the second row. Lastly, the node

with V > 12.1 and TI ≤ 0.25 is chosen to be further partitioned with the wind speed at

V = 16.4 m/s, corresponding to the bottom panel of the left scatter plots. In the right

panel, the size of each terminal node represents the budget allocation. With the five input

variables, our approach generates similar designs, because the importance of V and TI

dominates others in both cases. The supplementary document includes more details.

Table 2 compares the performance of our approach with alternatives. Recall that in

the numerical examples presented in Section 4 and the extended settings detailed in the

supplementary material, both WAMK-SIS and OA-LHS outperform the other methods;

consequently, we exclude other benchmarks from our results. Additionally, we consider

Latin Hypercube Sampling Dependent (LHSD) which could potentially perform better than

LHS when input variables are dependent (Mondal and Mandal, 2020). The results show

that our OptiTreeStrat approach, which utilizes carefully planned strata, can significantly

31



5 10 15 20 25

1
2

3
4

5
6

Lo
ad

 r
es

po
ns

e

0.0 0.1 0.2 0.3 0.4 0.5

1
2

3
4

5
6

−0.4 0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

5 10 15 20 25

1
2

3
4

5
6

Lo
ad

 r
es

po
ns

e

0.0 0.1 0.2 0.3 0.4 0.5

1
2

3
4

5
6

−0.4 0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

5 10 15 20 25

1
2

3
4

5
6

Wind speed

Lo
ad

 r
es

po
ns

e

0.0 0.1 0.2 0.3 0.4 0.5

1
2

3
4

5
6

Turbulence intensity

−0.4 0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

Wind shear

V≤ 12.1 V> 12.1

TI ≤ 0.25 TI > 0.25

V≤ 16.4 V> 16.4


n1*=12


n2*=12 

n3*=174

Root
node


n4*= 45

Figure 6: Example of strata design in wind turbine case study. Left: scatter plots of the tip

deflection vs each input variable where the horizontal line represents the resistance level l

and the vertical lines imply breaking points; Right: stratification construction, where each

splitting variable and its corresponding value match those in the left figure.

reduce the estimation variance.

6 Conclusion

This study investigates the stratification structure to minimize the estimation variance

in stochastic simulation. Based on the analytical finding in a univariate input, a robust

algorithm for multivariate inputs by using the concept of the decision tree is introduced.

OptiTreeStrat determines the split point with optimization and can avoid the data scarcity

32



Table 2: Comparison results from 25 experiments in wind turbine case study

3-dimensional case 5-dimensional case

Mean SE Mean SE

OptiTreeStrat 0.0098 0.0007 0.0095 0.0010

OA-LHS 0.0100 0.0015 0.0097 0.0013

LHSD 0.0098 0.0019 0.0099 0.0019

WAMK-SIS 0.0099 0.0010 0.0099 0.0019

issue by providing an appropriate number of strata when the input dimension is high,

but a few key variables exist. The numerical studies and wind turbine case study present

that OptiTreeStrat successfully recognizes important variables to effectively partition the

input space and is scalable because it explores variables one by one without considering

complicated functions such as multivariate kernels.

For computer models that demand extensive runtime, such as hours or even days for

a single run, surrogate-based methods, or experimental designs such as LHS, could be

useful. Conversely, OptiTreeStrat is well-suited for computer models with shorter runtime,

on the scale of minutes, or when large computational resources are available. The wind

turbine simulations utilized in our study have runtimes of a few minutes. The benefit of

our approach is most notable when estimating small failure probabilities, especially those

within the 10−2 to 10−3 range.

In the future, we will extend the approach to accommodate more complex cases by ex-

ploring multiple splits and addressing multivariate responses. When the input distribution

33



is uncertain, robust variance reduction techniques will be developed to effectively account

for such uncertainties. Additionally, our investigation will extend to establishing more gen-

eral guidelines for determining the pilot sample size and batch size in the context of batch

sequential experiments. We also plan to combine the proposed approach with dimension

reduction techniques (Li, 1991; Li and Yin, 2008) to enable a more flexible stratification

design. Finally, we will extend the application of our findings to the estimation of extreme

quantiles (Pan et al., 2020; Cannamela et al., 2008).

Acknowledgements

The authors thank the editor, the associate editor, and reviewers for their constructive and

thoughtful comments on various aspects of this work.

Disclosure Statement

The authors have declared that there are no conflicts of interest.

Funding

This work was partly supported by the U.S. National Science Foundation (Grant No.

CMMI-2226348 and CMMI-2226347) and National Research Foundation of Korea (Grant

No.: NRF-2021R1A2C1094699 and NRF-2021R1A4A1031019)

34



ORCID

Jaeshin Park: https://orcid.org/0009-0002-4347-5914

Eunshin Byon: https://orcid.org/0000-0002-2506-1606

Young Myoung Ko: https://orcid.org/0000-0003-0659-6688

Sara Shashaani: https://orcid.org/0000-0001-8515-5877

Supplementary Materials

The supplementary materials contain the following: (i) proofs of the theorems, (ii) dis-

cussion on how the pilot sample size and batch size are determined, (iii) details on the

stratification structure and bandwidth used in the numerical examples, (iv) extensive com-

parison results, including additional numerical experiments, and (v) further results from

the case study. Additionally, we have included the codes to reproduce the results in Table 1

and Figure 4. For detailed instructions to run the codes, please refer to the ‘ReadMe’ file.

References

Bect, J., Ginsbourger, D., Li, L., Picheny, V., and Vazquez, E. (2012). Sequential design

of computer experiments for the estimation of a probability of failure. Statistics and

Computing, 22:773–793.

Binois, M., Huang, J., Gramacy, R. B., and Ludkovski, M. (2019). Replication or explo-

35



ration? sequential design for stochastic simulation experiments. Technometrics, 61(1):7–

23.

Brent, R. P. (1971). An algorithm with guaranteed convergence for finding a zero of a

function. The Computer Journal, 14(4):422–425.

Cannamela, C., Garnier, J., and Iooss, B. (2008). Controlled stratification for quantile

estimation. The Annals of Applied Statistics, 2(4):1554–1580.

Cao, Q. D. and Choe, Y. (2019). Cross-entropy based importance sampling for stochastic

simulation models. Reliability Engineering & System Safety, 191:106526.

Choe, Y., Byon, E., and Chen, N. (2015). Importance sampling for reliability evaluation

with stochastic simulation models. Technometrics, 57(3):351–361.

Choe, Y., Lam, H., and Byon, E. (2018). Uncertainty quantification of stochastic sim-

ulation for black-box computer experiments. Methodology and Computing in Applied

Probability, 20:1155–1172.

Choe, Y., Pan, Q., and Byon, E. (2016). Computationally efficient uncertainty minimiza-

tion in wind turbine extreme load assessments. Journal of Solar Energy Engineering,

138(4):041012.

Cochran, W. G. (1977). Sampling Techniques. John Wiley & Sons, New York, NY.

Cole, D. A., Gramacy, R. B., Warner, J. E., Bomarito, G. F., Leser, P. E., and Leser, W. P.

(2023). Entropy-based adaptive design for contour finding and estimating reliability.

Journal of Quality Technology, 55(1):43–60.

36



Ding, Y. (2019). Data Science for Wind Energy. CRC Press, Boca Raton, FL.

Etoré, P., Fort, G., Jourdain, B., and Moulines, É. (2011). On adaptive stratification.

Annals of Operations Research, 189(1):127–154.

International Electrotechnical Commission (2005). Wind turbines—part 1: Design require-

ments, iec/tc88, 61400-1 (3rd ed.). Technical report, Geneva.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical

Learning, volume 112. Springer, New York, NY.

Jonkman, B. J. (2009). TurbSim User’s guide: Version 1.50. Technical report, National

Renewable Energy Lab.(NREL), Golden, Colorado.

Jonkman, J. M., Buhl, M. L., et al. (2005). FAST User’s guide. Technical report, National

Renewable Energy Lab.(NREL), Golden, Colorado.

Ko, Y. M. and Byon, E. (2022). Optimal budget allocation for stochastic simulation with

importance sampling: exploration vs. replication. IISE Transactions, 54(9):881–893.

Kurtz, N. and Song, J. (2013). Cross-entropy-based adaptive importance sampling using

gaussian mixture. Structural Safety, 42:35–44.

Lee, G., Ding, Y., Genton, M. G., and Xie, L. (2015). Power curve estimation with

multivariate environmental factors for inland and offshore wind farms. Journal of the

American Statistical Association, 110(509):56–67.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the American

Statistical Association, 86(414):316–327.

37



Li, L. and Yin, X. (2008). Sliced inverse regression with regularizations. Biometrics,

64(1):124–131.

Li, S., Ko, Y. M., and Byon, E. (2021). Nonparametric importance sampling for wind

turbine reliability analysis with stochastic computer models. The Annals of Applied

Statistics, 15(4):1850–1871.

Liu, B., Yue, X., Byon, E., and Kontar, R. A. (2022). Parameter calibration in wake effect

simulation model with stochastic gradient descent and stratified sampling. The Annals

of Applied Statistics, 16(3):1795 – 1821.

Mease, D. and Bingham, D. (2006). Latin hyperrectangle sampling for computer experi-

ments. Technometrics, 48(4):467–477.

Mondal, A. and Mandal, A. (2020). Stratified random sampling for dependent inputs in

Monte Carlo simulations from computer experiments. Journal of Statistical Planning

and Inference, 205:269–282.

Moriarty, P. (2008). Database for validation of design load extrapolation techniques.

Wind Energy: An International Journal for Progress and Applications in Wind Power

Conversion Technology, 11(6):559–576.

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its Applications,

9(1):141–142.

Neddermeyer, J. C. (2009). Computationally efficient nonparametric importance sampling.

Journal of the American Statistical Association, 104(486):788–802.

38



Pan, Q., Byon, E., Ko, Y. M., and Lam, H. (2020). Adaptive importance sampling for

extreme quantile estimation with stochastic black box computer models. Naval Research

Logistics, 67(7):524–547.

Pettersson, P. and Krumscheid, S. (2022). Adaptive stratified sampling for nonsmooth

problems. International Journal for Uncertainty Quantification, 12(6).

Shields, M. D. (2016). Refined latinized stratified sampling: A robust sequential sample

size extension methodology for high-dimensional latin hypercube and stratified designs.

International Journal for Uncertainty Quantification, 6(1):79–97.

Stein, M. (1987). Large sample properties of simulations using latin hypercube sampling.

Technometrics, 29(2):143–151.

Tang, B. (1993). Orthogonal array-based latin hypercubes. Journal of the American

Statistical Association, 88(424):1392–1397.

Tipton, E. (2013). Stratified sampling using cluster analysis: A sample selection strategy

for improved generalizations from experiments. Evaluation review, 37(2):109–139.

Wycoff, N., Binois, M., and Gramacy, R. B. (2022). Sensitivity prewarping for local surro-

gate modeling. Technometrics, 64(4):535–547.

39


