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Abstract

Multistage manufacturing processes with identical stages provide three-dimensional
process data in which the first dimension represents the process (control/sensing) vari-
able, the second is the stage, and the third is the measurement/sampling/data acqui-
sition time point. Diagnosing quality faults in such processes often requires the simul-
taneous identification of crucial process variables and stages associated with product
quality anomalies. Most existing diagnosis methods convert 3D data into a 2D ma-
trix, resulting in loss of information and reduced diagnostic accuracy and stability. To
address this challenge, we propose a penalized tensor regression model that regresses
the product quality index against its 3D process data. For the estimation of high-
dimensional regression coefficients with the limited amount of historical data, we apply
the CANDECOMP/PARAFAC and Tucker decompositions to the coefficient tensor,
which significantly reduces the number of parameters to be estimated. Based on the
decompositions, a new regularization term is designed to enable the joint identification
of critical process variables and stages. To estimate the parameters, we develop the
block coordinate proximal descent algorithm and provide its convergence guarantee.
Numerical studies demonstrate that the proposed methods can enhance diagnostic sta-
bility and on average improve the diagnostic accuracy by around 20% over existing
benchmarks.

Keywords: Quality defect/fault diagnosis; Penalized tensor regression; Two-dimensional
variable selection.
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Nomenclature
Dimensions & Ranks

Id, Pd Dimension of dth mode of a tensor, d = 1, 2, 3.

Rd, R Rank of dth mode of a tensor, d = 1, 2, 3.

Variables

x A vector in RI1 or one-dimensional tensor denoted by a boldface lowercase letter.

X A matrix in RI1×I2 or two-dimensional tensor denoted by a boldface uppercase letter.

X A tensor in RI1×I2×I3 or a three-dimensional tensor denoted by a calligraphic letter.

xi1i2i3 An (i1, i2, i3)th entry in R of a tensor X , i1 = 1, . . . , I1, i2 = 1, . . . , I2, i3 = 1, . . . , I3.

x:i2i3 A mode-1 (column) fiber in RI1 of a tensor X , ∀i2, i3.

xi1:i3 A mode-2 (row) fiber in RI2 of a tensor X , ∀i1, i3.

xi1i2: A mode-3 (tube) fiber in RI3 of a tensor X , ∀i1, i2.

Xi1:: A mode-1 (horizontal) slice in RI2×I3 of a tensor X , ∀i1.

X:i2: A mode-2 (lateral) slice in RI1×I3 of a tensor X , ∀i2.

X::i3 A mode-3 (frontal) slice in RI1×I2 of a tensor X , ∀i3.

Operators

vec(X ) A vectorization of a tensor X , which stacks all mode-1 fibers of a tensor X into one
vector.

⟨X ,Y⟩ An inner product of two same-sized tensors X ∈ RI1×I2×I3 and Y ∈ RI1×I2×I3 ,
which calculates ⟨X ,Y⟩ =

∑
i1,i2,i3

xi1i2i3yi1i2i3 .

X⊗Y AKronecker product of two matricesX = [x1, . . . ,xn] ∈ Rm×n andY = [y1, . . . ,yq] ∈
Rp×q, which is defined by X⊗Y = [x1⊗Y, . . . , xn⊗Y] = [x1⊗y1, x1⊗y2, . . . ,xn⊗
yq−1,xn ⊗ yq] ∈ Rmp×nq.

X⊙Y A Khatri-Rao product of two matrices X = [x1, . . . ,xn] ∈ Rm×n, Y = [y1, . . . ,yq] ∈
Rp×q with n = q, which is defined by X ⊙Y = [x1 ⊗ y1, x2 ⊗ y2, . . . , xn ⊗ yn]. If
n = q = 1, then X⊗Y = X⊙Y with size mp× n.

X ×d Y A mode-d product of a tensor X ∈ RI1×I2×I3 with a matrix Y ∈ RJ×Id , d = 1, 2, 3,
whose component is calculated by (X ×1Y)ji2i3 =

∑I1
i1=1 xi1i2i3yji1 , (X ×2Y)i1ji3 =∑I2

i2=1 xi1i2i3yji2 , and (X ×3 Y)i1i2j =
∑I3

i3=1 xi1i2i3yji3 .

x ◦ y A vector outer product of x ∈ RI and y ∈ RJ , whose component is calculated by
(x ◦ y)ij = xiyj .

prox(·) A proximal operator.

S(·) A soft-thresholding operator.
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1 Introduction

Many multistage manufacturing processes (MMPs) consist of multiple identical stages. For

example, Figure 1 illustrates the layout of a hot rolling mill that is widely used in the

steel-making industry. The primary function of the mill is to roll reheated semi-finished

steel slabs thinner and longer through a series of rolling mill stands. The hot rolling mill

in Figure 1 comprises seven identical stages (denoted as “Stage 1” to “Stage 7”). Another

example of the MMP with identical stages is additive manufacturing (AM), which is a

computer-controlled process that creates three-dimensional objects by depositing materials

layer by layer (Gibson et al., 2021). In the AM process, each layer can be seen as one

stage. For such a MMP, since all the stages are identical, they have the same process

variables (i.e., process control parameters or sensing signals), which generate multi-channel

time-series signals (referred to as “process data” hereafter). For instance, each of the stages

in the hot rolling mill in Figure 1 generates multi-channel process data from the following

process variables: target speed of rollers, measured speed of rollers, looper value, target force

on both sides of the rollers, measured force on the work side of rollers, measured force on

the transfer side of rollers, roller gap, looper height, and temperature, etc (Jeong and Fang,

2022).

Figure 1: A steel slab rolling mill with seven stands (Jeong and Fang, 2022).

The multi-channel process data from a MMP typically vary from one product to another

and are associated with the quality of products. This is because when fabricating products,

process control parameters are adjusted (in real-time) by a closed-loop feedback control

algorithm for product quality guarantees, which results in the change of process data.

Also, the poor performance and/or lack of robustness of the control algorithm leads to

inappropriate process control parameter values that result in product quality defects. Figure

2 illustrates products without and with quality defects obtained from the hot rolling mill

shown in Figure 1. Figure 3 presents some example process data obtained from two out of
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multiple process variables for six products (three defective and three non-defective). Since

the multi-channel process data are associated with product quality defects, they can be

used for the defect root cause diagnosis, which focuses on identifying the crucial process

variables (as well as their stage locations) whose inappropriate values are responsible for

the quality defect of products. Quality defect diagnosis plays an important role in product

quality control since diagnostic results can be used to guide the modification of the feedback

control algorithm to reduce the probability of fabricating defective products in the future.

(a) A non-defective product (b) A defective product

Figure 2: Products without and with quality defects from a hot rolling process (Balmash-
nova et al., 2013).

(a) Looper height (b) Temperature

Figure 3: Illustration of multi-channel process data obtained from the looper height vari-
able at Stage 4 and the temperature variable at Stage 1 with six products (three black
dash-dotted lines and three red solid lines represent non-defective and defective products,
respectively).

Quality defect diagnosis can usually be achieved by employing data science methods that

establish a mapping between a product’s quality index and its multi-channel process data.

This approach enables the identification of the subset of critical process variables (and their

stage locations) that exhibit a strong association with product quality defects. Among the

large number of fault diagnosis methods, penalization/regularization-based regression is a

systematical approach with well-established statistical properties. For example, to identify
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the crucial process variables (and their stage locations) that are responsible for product

quality defects in the hot rolling mill in Figure 1, a straightforward method is to build a

logistic regression model that maps a product’s quality index (a binary variable, which is

“1” if the product is defective and “0” otherwise) against its process data and penalize the

sum of ℓ2 norms of the regression coefficients corresponding to each process variable (or

each stage) (Meier et al., 2008). Any process variables (and their stage locations) whose

coefficients are penalized to be zeros are identified as non-crucial variables (and stages), and

other process variables (and stages) with non-zero coefficients are selected to be responsible

for the quality defect of the products. However, such a penalized logistic regression model

has the following three limitations.

First, the number of unknown parameters in the model is extremely huge but the number

of samples for model training is usually limited, so both estimated regression coefficients

and diagnostic results are neither stable nor reliable. As an example, Figure 4 illustrates the

structure of the process data for the hot rolling mill, which has seven stages, nine process

variables in each stage, and 1, 500 measurement points over time for each process variable

at each stage. Therefore, the number of elements of the process data corresponding to each

product is 7×9×1, 500 = 94, 500. This implies that the number of unknown parameters to

be estimated in the logistic regression model is 94, 501 (1 for the intercept term). However,

the maximum number of samples available for model training is usually not larger than

several hundred, which results in the “large p, small n” problem in statistical estimation

and inference.

Second, the time-series data from some of the process variables and stages are often

highly correlated, which compromises the accuracy of diagnostic results. It is known that

many penalization-based variable selection methods are sensitive to the correlation among

predictors (Tibshirani, 1996; Yuan and Lin, 2006; Meier et al., 2008). Thus, it is beneficial to

reduce or remove the high correlation among predictors (e.g., process variables, stages, and

measurement points in the hot rolling mill application) when conducting variable selection.

Third, the penalized logistic regression proposed by Meier et al. (2008) cannot provide

a structured variable selection solution. Specifically, since it separately penalizes the ℓ2

norm of the regression coefficients corresponding to each process variable at each stage

(each process variable has multiple coefficients since it has multiple measurement points),
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Figure 4: Data structure of the steel slab process data obtained from a hot rolling mill (the
first dimension represents the process variable, the second dimension is the stage, and the
third dimension is the measurement point).

it provides an unstructured diagnostic result that suggests various combinations of process

variables and stages are responsible for product quality defects. Figure 5(a) shows an

example of such an unstructured solution, in which the fibers with dark color are process

variables selected as crucial. It can be seen that the first process variable is identified

as crucial in Stage 1 but non-informative in Stage 2, while the second process variable is

identified as important in Stage 2 but not Stage 1. Such an unstructured result misguides

engineers in the revision of the feedback control algorithm (Jeong and Fang, 2022) since

it selects different process variables at different stages. What control algorithm engineers

prefer is a structured solution that after removing the non-informative variables and stages,

all the remaining process variables and their stage locations are considered crucial for the

product quality defects. Figure 5(b) illustrates such a structured solution, in which Process

variables 1, 4, and 5 as well as Stages 1, 3, and 4 are considered important. To the best

of our knowledge, there is no existing work that is able to address all three aforementioned

limitations.

1.1 Related Work

In the literature, there are several methods that can possibly be used to jointly identify

the critical process variables and stage locations accountable for product quality defects

(i.e., addressing the third limitation by providing a structured diagnostic result) (Zhao

and Leng, 2014; Zhao et al., 2017; Jeong and Fang, 2022). For example, the authors in
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(a) An unstructured solution (b) A structured solution

Figure 5: An example of unstructured and structured solutions (the colored fibers are
informative).

Zhao and Leng (2014) proposed the structured LASSO, which maps the expectation of a

normally distributed response variable to an explanatory matrix using a bilinear product

and penalizes the regression coefficients. Zhao et al. (2017) proposed a trace regression

model that regresses a Gaussian response variable against its 2D explanatory matrix. To

achieve 2D variable selection, it penalizes both rows and columns of the coefficient matrix

simultaneously using the group LASSO penalty. In Jeong and Fang (2022), the authors

developed a new 2D variable selection method based on a penalized matrix regression model,

which regresses the quality index of a product against its process variable matrix. Here, the

unknown regression coefficient matrix is decomposed as the product of two factor matrices,

and the rows of the first factor matrix and columns of the second matrix are penalized

simultaneously using the sum of ℓ2 norms to inspire sparsity.

Although extensive numerical studies have shown that the aforementioned models work

relatively well, they all require the process data to be a matrix. This implies that, to use

these methods, we will have to transform the 3D process data such as in Figure 4 into a

matrix form. This is typically done by taking the average of the observations at multiple

measurement points of each process variable (at each stage location) and using its mean

value to represent the whole sequence of observations (i.e., eliminating the measurement

point dimension in Figure 4). One obvious limitation of doing so is the loss of useful

information, and thus the accuracy of diagnostic results is compromised.

To preserve the information in process variables when conducting quality defect diag-

nosis, we may model the process data as a tensor. For example, the process data in Figure
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4 is a 3D tensor. Diagnosis can be conducted by constructing a tensor regression model

that regresses the quality index of a product against its process data of a tensor form and

penalizes the regression coefficients. Many tensor regression models have been developed

in the literature (Zhou et al., 2013; Hoff, 2015; Fang et al., 2019; Gahrooei et al., 2019; Yue

et al., 2020; Wang et al., 2021; Miao et al., 2022; Gaw et al., 2022; Zhao et al., 2023; Zhou

and Fang, 2023; Zhou et al., 2023). For example, Yue et al. (2020) proposed a tensor mixed

effects model to effectively analyze and separate mixed effects in massive high-dimensional

Raman mapping data used in nanomanufacturing quality inspections. Shen et al. (2022)

introduced a new super-resolution method using smooth and sparse tensor completion to in-

tegrate image stream data from various imaging systems with complementary resolutions,

enhancing both spatial and temporal resolution for more effective quality control. Shen

et al. (2022) developed a smooth robust tensor completion model that effectively combines

video recovery and background/foreground separation into a unified framework, addressing

the challenge of missing pixels in robust tensor PCA. Although these models have demon-

strated superior performance, they are not suitable for the applications discussed in this

article for the following reasons. First, although some works use regularization terms to

inspire sparsity, none of them can yield a structured solution for variable selection as the

one shown in Figure 5(b). This implies that they cannot be used to jointly identify the

important process variables and their stage locations. Second, although these works em-

ploy or develop particular optimization algorithms for parameter estimation, most of them

are iterative algorithms without analytical or closed-form solutions. Thus, they will have

to utilize certain optimization software for parameter estimation, which is typically very

expensive in computation and thus not suitable for large-scale datasets.

1.2 Contributions of this Article

This study proposes a new tensor-based diagnosis method that simultaneously identifies the

crucial process variables and their stage locations responsible for product quality defects.

The proposed methods regress the quality index of a product against its process tensor

data, where the quality index follows an exponential family of distributions. To address

the challenge of estimating a large number of unknown parameters with a relatively limited

number of historical data samples (i.e., the “large p small n” problem), we decompose
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the unknown tensor coefficients using the CANDECOMP/PARAFAC (CP) (Carroll and

Chang, 1970) and Tucker (Tucker, 1966) decompositions, where CP expands the coefficient

tensor as a product of several low-dimensional basis matrices, and Tucker decomposes the

coefficient as a product of a core tensor and several low-dimensional factor matrices. By

employing one of the decomposition methods, we estimate the basis/factor matrices (and a

core tensor if Tucker is chosen) instead of estimating the high-dimensional coefficient tensor

itself. Thus, it significantly reduces the number of parameters to be estimated and thus

reduces the number of historical data samples needed for model estimation. Another benefit

of using the tensor decompositions is that they can reduce the high correlation among

process variables, stages, and measurement points such that diagnostic accuracy can be

improved (i.e., addressing the aforementioned high correlation challenge). This is because

applying the CP/Tucker decomposition to the unknown coefficient tensor is equivalent to

applying dimensionality reduction to the process tensor data (also means removing some of

the correlation in process variables, stages, and measurement points). In the literature, the

tensor train (TT) decomposition (Oseledets, 2011) is another frequently employed method

for tensor decomposition in regression analysis. It represents a tensor as a sequence of

interconnected lower-dimensional (core) tensors arranged in a train-like structure. Each

core tensor in this sequence is linked to its neighbors through matrix multiplications along

one mode, facilitating an efficient and scalable representation of high-dimensional data,

thereby mitigating the curse of dimensionality. In this article, we choose CP and Tucker

decompositions over TT decomposition because designing a regularization term for TT

decomposition that yields structured diagnostic results is infeasible.

To achieve the goal of jointly identifying the crucial process variables and stages, we

incorporate the specially designed regularization term into the tensor regression model. To

be specific, we simultaneously penalize the rows of the first and second basis/factor matrices

using the sum of ℓ2 norms. In addition, to estimate the parameters, we first propose

the block coordinate descent algorithm that cyclically updates each block of parameters.

We then design the block coordinate proximal descent algorithm, which exploits closed-

form solutions. We also prove that both of the two optimization algorithms possess the

global convergence property, which implies that they converge to a critical point of the

optimization criterion from any initial point.
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The proposed methods are applicable to a broad range of industrial applications that

utilize multiple identical manufacturing stages, extending beyond the previously discussed

hot rolling for strip steel and additive manufacturing. Examples include paper manufactur-

ing, where identical drying cylinders sequentially remove moisture to consistently form and

dry paper. In glass manufacturing, identical annealing lehrs uniformly cool glass sheets to

prevent defects. Aluminum rolling features several identical rolling mills in the finishing

stage to precisely reduce thickness, akin to steel rolling. Moreover, high-volume printing

operations employ identical printing units to apply various ink layers sequentially, ensuring

consistent, high-quality prints. These examples highlight the critical role of multiple iden-

tical machines in achieving product uniformity and adhering to quality standards across

different industries, which stand to benefit from the proposed diagnosis methods.

The rest of the article is organized as follows. Section 2 discusses the tensor-based quality

fault diagnosis methodology. Section 3 presents optimization algorithms for parameter

estimation. Sections 4 and 5 evaluate the performance of our proposed methods using

simulated and real-world datasets, respectively. Section 6 provides concluding remarks.

2 The Tensor-based Quality Fault Diagnosis Methodol-

ogy

2.1 Generalized Linear Models (GLMs)

Suppose there exists a dataset that consists of quality indices and process data of n products

obtained from a MMP. Let yi ∈ R denote the quality index and Xi ∈ RP1×P2×P3 the process

variable tensor of product i for i = 1, . . . , n, where P1 is the number of process variables,

P2 is the number of stages, and P3 is the number of measurement points. We assume

that Yi is a random variable with an independent observation yi from a distribution in

the exponential family. Thus, its probability mass or density function can be expressed as

follows (McCullagh and Nelder, 1989):

f(yi|θi, ϕ) = exp

[
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

]
, (1)

where θi is the natural parameter and ϕ > 0 is the dispersion parameter. a(·), b(·), and c(·)
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are known functions determined by the specific distribution in the exponential family. For

example, if Yi follows a normal distribution with mean µi and standard deviation σ, i.e., Yi ∼

N(µi, σ
2), then the parameters and functions are described as θi = µi, ϕ = σ2, a(ϕ) = ϕ,

b(θi) = θ2i /2, and c(yi, ϕ) = −1
2(y

2
i /ϕ+ log(2πϕ)); if Yi follows a binomial distribution with

ni samples and the probability of a target quality index occurring, πi, i.e., yi ∼ B(ni, πi),

then the parameters and functions can be represented as θi = log(πi/(1 − πi)), a(ϕ) = 1,

b(θi) = ni log(1+ eθi), and c(yi, ϕ) = log
(
ni
yi

)
. In this article, we mainly consider the GLMs

in which the dispersion parameter is known. Examples include Bernoulli, binomial, Poisson,

and exponential distributions.

The relationship between quality indices and process tensor data can be established by

using a known link function g(·), which links the expected value of Yi, i.e., µi = E[Yi] to

the linear combination of predictors, α+
〈
B,Xi

〉
as follows:

g(µi) = α+
〈
B,Xi

〉
, (2)

where α ∈ R is the intercept, B ∈ RP1×P2×P3 is the unknown regression coefficient tensor,

and
〈
·, ·
〉
is the element-wise inner product operator of two tensors. As an example of the

link function g(·), when Yi follows a binomial distribution, one of the choices for g(·) is the

logit function, namely, g(µi) = log(µi/(1− µi)).

The coefficient tensor B in Equation (2) can be estimated by minimizing the loss function

L, i.e., minB,α L(B, α), where the loss function is the negative log-likelihood function if the

response variable (i.e., quality index) follows a Bernoulli, binomial, Poisson, or exponential

distribution. If it follows a normal distribution, we use the squared error loss for the loss

function.

As discussed in Section 1, one of the challenges is that the number of parameters to

be estimated is large, whereas the number of data samples is relatively small. To address

this challenge, we expand the high-dimensional unknown coefficient tensor B using the

CP/Tucker decomposition, which provides a set of low-dimensional basis/factor matrices

and a core tensor whose size is much smaller than that of B. Instead of estimating the

high-dimensional coefficient tensor itself, we estimate the basis/factor matrices and the

core tensor, which significantly reduces the number of parameters to be estimated.
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2.2 Coefficient Expansion using Tensor Decompositions

The CP decomposition expands the unknown coefficient tensor B as a product of several

basis matrices:

B ≈
R∑

r=1

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3 ≡ [[B1,B2,B3]], (3)

where R is the rank of the CP decomposition determined by certain model selection criteria

such as AICc (to be discussed later), and β
(r)
d = [β

(r)
d,1, . . . , β

(r)
d,Pd

]⊤ ∈ RPd . The operator “◦”

denotes the outer product. Also, it can be shown that vec(B)≈ (B3 ⊙B2 ⊙B1)1R, where

Bd = [β
(1)
d , . . . ,β

(R)
d ] ∈ RPd×R for d = 1, 2, 3, denotes the basis matrix, 1R ∈ RR is a vector

of ones with size R, and the operator “⊙” represents the Khatri-Rao product (Kolda and

Bader, 2009; Fang et al., 2019).

The Tucker decomposition expands the coefficient tensor B into one core tensor and a

set of factor matrices:

B ≈
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

gr1,r2,r3β
(r1)
1 ◦ β(r2)

2 ◦ β(r3)
3 ≡ [[G,B1,B2,B3]], (4)

where gr1,r2,r3 = (G)r1,r2,r3 is the (r1, r2, r3)-entry of the core tensor G ∈ RR1×R2×R3 , and

Bd = [β
(1)
d , . . . ,β

(Rd)
d ] ∈ RPd×Rd for d = 1, 2, 3, is the factor matrix. It is known that

vec(B) ≈ G ×1 B1 ×2 B2 ×3 B3 holds, where the operator “×d” stands for the mode-d

product (Kolda and Bader, 2009; Fang et al., 2019).

As a result, the regression model in Equation (2) can be expressed as follows:

g(µi) = α+
〈
B,Xi

〉
= α+

〈
vec(B), vec(Xi)

〉
≈


α+

〈
(B3 ⊙B2 ⊙B1)1R, vec(Xi)

〉
, if CP,

α+
〈
G ×1 B1 ×2 B2 ×3 B3, vec(Xi)

〉
, if Tucker.

(5)

Equation (5) implies that instead of estimating B ∈ RP1×P2×P3 with P1 × P2 × P3 pa-

rameters, we can estimate {B1,B2,B3} with (P1+P2+P3)×R parameters if CP is employed

or {G,B1,B2,B3} with R1R2R3+P1R1+P2R2+P3R3 parameters if Tucker is used. Since

the rank is usually low, this helps significantly reduce the number of parameters to be esti-
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mated. Taking the hot rolling mill in Figure 1 as an example, P1 = 9, P2 = 7, P3 = 1, 500,

which implies that the coefficient tensor B has 94, 500 = 9 × 7 × 1, 500 elements to be

estimated. If the rank R = 2 for CP and (R1, R2, R3) = (2, 1, 2) for Tucker, the number of

elements in the coefficient tensor to be estimated is reduced to 3, 032 = (9+ 7+ 1, 500)× 2

and 3, 030 = 2× 1× 2 + 9× 2 + 7× 1 + 1, 500× 2, respectively.

In real-world applications, the rank of the coefficient tensor B is usually low since there

exists heavy correlation within the process tensor data (e.g., the observations from each

process variable are auto-correlated and those from different process variables are cross-

correlated). Expanding the coefficient tensor into low-dimensional basis/factor matrices

and the core tensor using the CP/Tucker decomposition is equivalent to conducting di-

mensionality reduction on the process tensor data, which helps to remove or decrease the

correlation among process variables, stages, and measurement points (Fang et al., 2019)

and thus improve the accuracy and stability of subsequent diagnosis.

2.3 Regularization and Model Selection

To simultaneously identify the crucial process variables and their stage locations respon-

sible for product quality defects, we add a regularization term to the loss function when

conducting parameter estimation. Here, we demonstrate the Tucker-based method as an

example to discuss the construction of the regularization term. The regularization term for

the CP-based method is same as that for the Tucker-based method except that the core

tensor G is excluded.

The regularization term is designed to penalize the rows of the first and second ba-

sis/factor matrices B1 and B2 using the sum of ℓ2 norms. In addition, we penalize the core

tensor G and the third basis/factor matrix B3 using ℓ1 norms to enhance the numerical

stability in parameter estimation and alleviate possible non-uniqueness (non-identifiability)

of parameter estimates. More details about the identifiability issue in the tensor regression

setting are discussed in Zhou et al. (2013). As a result, parameter estimation is performed

by solving the following optimization problem:

min
G,B1,B2,B3,α

F(G,B1,B2,B3, α) := L(G,B1,B2,B3, α) +R(G,B1,B2,B3), (6)
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where the regularization term is defined as follows:

R(G,B1,B2,B3) = λ

[
∥G∥1 +

P1∑
p1=1

γ1∥b1,p1∥2 +
P2∑

p2=1

γ2∥b2,p2∥2 + ∥B3∥1

]
. (7)

Here, λ ≥ 0 is a tuning parameter and ∥ · ∥q is the ℓq norm. b1,p1 ∈ R1×R1 is the p1th

row of B1 ∈ RP1×R1 and b2,p2 ∈ R1×R2 is the p2th row of B2 ∈ RP2×R2 . In the CP-based

method, R1 = R2 = R is the rank of B, and in the Tucker-based method, R1 and R2 are

respectively the first and second components of the rank {Rd}3d=1 of B. γ1 =
√
R1 and

γ2 =
√
R2 are used to rescale the penalty terms ∥b1,p1∥2 and ∥b2,p2∥2, respectively, since

the lengths of vectors b1,p1 and b2,p2 are different. These values ensure that the vectors

with different lengths are penalized more fairly (Yuan and Lin, 2006). Such a scaling is

particularly important for the Tucker-based method because the number of elements in the

two penalty terms can be significantly different when the two components of the rank, R1

and R2, are different.

The tuning parameter λ and rank {Rd}3d=1 (or R for the CP-based method) can be

selected using a model selection criterion such as AIC and BIC. Both Akaike Information

Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion (BIC) (Schwarz, 1978)

evaluate the goodness of fit for a candidate model by striking a balance between its likelihood

and model complexity, which is determined by the number of parameters. The difference

between these two criteria lies in their respective degrees of penalizing model complexity.

Specifically, AIC puts less penalty to model complexity, leading to the selection of more

complex model than BIC. That is, AIC may be favored when pursuing a more flexible

model, whereas BIC typically favors a more parsimonious model. Both AIC and BIC have

been extensively utilized in the literature without a particular preference (Kutner et al.,

2005; Faraway, 2014).

In this article, we use the second-order Akaike Information Criterion (AICc) (Hurvich

and Tsai, 1989) as a model selection criterion. AICc is the bias-corrected AIC that adds

a small-sample-size bias correction term to AIC. It offers advantages over AIC and BIC in

our diagnostic application, particularly for small sample sizes. It includes a correction term

that adjusts the penalty for model complexity, reducing the bias that AIC might introduce

and avoiding the tendency of BIC to favor overly complex models in small datasets. AICc
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also supports reliable model selection for a range of sample sizes, making it well-suited for

the variable datasets typical in real-world multistage manufacturing processes, especially

given the large number of parameters that need to be estimated. AICc is defined as follows:

AICc = AIC +
2p(p+ 1)

n− p− 1

= −2ℓ(Ĝ, B̂1, B̂2, B̂3, α̂) + 2p+
2p(p+ 1)

n− p− 1
,

(8)

where ℓ(Ĝ, B̂1, B̂2, B̂3, α̂) is the log-likelihood function value that is evaluated at the solution

(Ĝ, B̂1, B̂2, B̂3, α̂) of the optimization problem (6). n is the sample size, and p is the number

of nonzero parameters. When n → ∞, the bias-corrected term converges to 0 and thus

AICc converges to AIC. This implies that if the ratio n/p is sufficiently large, then AIC

and AICc will be similar and tend to select the same model. In general, the use of AICc is

recommended when the ratio n/p is small, say < 40 (Burnham and Anderson, 2002).

The accurate rank selection is important to the performance of the proposed methods

and many other tensor decomposition-based statistical learning methods (Fang et al., 2019).

However, the given sample size is often limited in reality, so it is expected that a lower rank

will be selected when the true rank is high. This is because a higher rank implies more

parameters to be estimated, which requires more samples for model training; also, similar

to many other model selection criterion, AIC and AICc are data-driven, so they will select

a rank that yields the best performance of the model, which might not be a rank close to

the true one. In Section 4, we will show that the proposed AICc criterion works relatively

well in identifying an appropriate rank for the proposed methods.

We set the same tuning parameter λ for all terms in (7) for ease of implementation.

At the cost of computation efficiency, it is possible to set individual tuning parameters for

each term.

3 Optimization Algorithms for Parameter Estimation

In this section, we discuss the optimization algorithms to solve optimization criterion in (6).

We will again use the Tucker-based model as an example. For the CP-based method, the

optimization algorithms are same as those of the Tucker-based method except that the core
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tensor G needs to be excluded.

To solve the optimization problem (6), we first propose the general block coordinate

descent (BCD) algorithm (summarized in Algorithm 1), which cyclically optimizes one

block of the parameters while keeping other blocks constant.

Algorithm 1 Block Coordinate Descent (BCD)

1: Input: Data {Xi, yi}ni=1 and rank

R if CP,

{Rd}3d=1 if Tucker.

2: Initialization: Randomly choose {B0, α0}. k ← 1.

3: Decompose B0 using one of the tensor decompositions:{B0
1,B

0
2,B

0
3} ← CPDecomp(B0) if CP,

{G0,B0
1,B

0
2,B

0
3} ← TuckerDecomp(B0) if Tucker.

4: while convergence criterion not met do

5: Gk ← argminG F(G,Bk−1
1 ,Bk−1

2 ,Bk−1
3 , αk−1).

6: Bk
1 ← argminB1

F(Gk,B1,B
k−1
2 ,Bk−1

3 , αk−1).

7: Bk
2 ← argminB2

F(Gk,Bk
1,B2,B

k−1
3 , αk−1).

8: Bk
3 ← argminB3

F(Gk,Bk
1,B

k
2,B3, α

k−1).

9: αk ← argminαF(Gk,Bk
1,B

k
2,B

k
3, α).

10: k ← k + 1.

11: end while

12: Ĝ ← Gk, B̂1 ← Bk
1, B̂2 ← Bk

2, B̂3 ← Bk
3, α̂← αk.

13: Output: Ĝ, B̂1, B̂2, B̂3, α̂.

Next, we extend the BCD algorithm to the block coordinate proximal descent (BCPD)

algorithm, which exploits closed-form solutions by considering the non-differentiability of

the regularization terms in (7). Specifically, Theorem 1 suggests that if the negative log-

likelihood function has a Lipschitz continuous gradient, the (proximal) gradient descent

step for each sub-problem in Algorithm 1 has closed-form solutions.

Theorem 1. If the response variable Yi follows a distribution whose negative log-likelihood

function L has a Lipschitz continuous gradient, then BCPD has the following closed-form
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solutions to solve the optimization problem (6).

Gk = S(1)
λτk0

(
Gk−1 − τk0∇GL(Gk−1,Bk−1

1 ,Bk−1
2 ,Bk−1

3 , αk−1)
)
,

Bk
1 = S(2)

λγ1τk1

(
Bk−1

1 − τk1∇B1L(Gk,Bk−1
1 ,Bk−1

2 ,Bk−1
3 , αk−1)

)
,

Bk
2 = S(2)

λγ2τk2

(
Bk−1

2 − τk2∇B2L(Gk,Bk
1,B

k−1
2 ,Bk−1

3 , αk−1)
)
,

Bk
3 = S(1)

λτk3

(
Bk−1

3 − τk3∇B3L(Gk,Bk
1,B

k
2,B

k−1
3 , αk−1)

)
,

αk = αk−1 − τk4∇αL(Gk,Bk
1,B

k
2,B

k
3, α

k−1),

(9)

where γ1 =
√
R1, γ2 =

√
R2. τ

k
j > 0 for j = 0, . . . , 4 is a step size. S(1)

λτkj
(·) for j = 0, 3 is the

component-wise soft-thresholding operator, and S(2)
λγjτkj

(·) for j = 1, 2 is the soft-thresholding

operator, which are defined by

[
S(1)
λτk0

(G)
]
r1,r2,r3

=


gr1,r2,r3 − λτk0 , if gr1,r2,r3 > λτk0

gr1,r2,r3 + λτk0 , if gr1,r2,r3 < −λτk0

0, if |gr1,r2,r3 | ≤ λτk0

(10)

[
S(2)
λγjτkj

(Bj)
]
pj

=


bj,pj − λγjτ

k
j

bj,pj
∥bj,pj∥2

, if ∥bj,pj∥2 > λγjτ
k
j

0, if ∥bj,pj∥2 ≤ λγjτ
k
j

(11)

[
S(1)
λτk3

(B3)
]
p3,r3

=


bp3,r3 − λτk3 , if bp3,r3 > λτk3

bp3,r3 + λτk3 , if bp3,r3 < −λτk3

0, if |bp3,r3 | ≤ λτk3

(12)

where
[
S(1)
λτk0

(G)
]
r1,r2,r3

denotes the (r1, r2, r3)-entry of S(1)
λτk0

(G) for rd = 1, . . . , Rd, d =

1, 2, 3.
[
S(2)
λγjτkj

(Bj)
]
pj

denotes the pjth row of S(2)
λγjτkj

(Bj) for pj = 1, . . . , Pj, j = 1, 2.[
S(1)
λτk3

(B3)
]
p3,r3

denotes the (p3, r3)-entry of S(1)
λτk3

(B3) for p3 = 1, . . . , P3 and r3 = 1, . . . , R3.

The step size τkj > 0, j = 0, . . . , 4 can be set to a sufficiently small constant, a dimin-

ishing sequence (e.g., 1/k), or determined by the backtracking line search (Boyd and Van-

denberghe, 2004; Nocedal and Wright, 2006). In the simulation study, we set τkj = 10−3, ∀j

for ease of implementation. Algorithm 2 summarizes the BCPD algorithm.
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Algorithm 2 Block Coordinate Proximal Descent (BCPD)

1: Input: Data {Xi, yi}ni=1 and rank

R if CP,

{Rd}3d=1 if Tucker.

2: Initialization: Randomly choose {B0, α0}. k ← 1.

3: Decompose B0 using one of the tensor decompositions:{B0
1,B

0
2,B

0
3} ← CPDecomp(B0) if CP,

{G0,B0
1,B

0
2,B

0
3} ← TuckerDecomp(B0) if Tucker.

4: while convergence criterion not met do

5: Compute (Gk,Bk
1,B

k
2,B

k
3, α

k) using (9).

6: k ← k + 1.

7: end while

8: Ĝ ← Gk, B̂1 ← Bk
1, B̂2 ← Bk

2, B̂3 ← Bk
3, α̂← αk.

9: Output: Ĝ, B̂1, B̂2, B̂3, α̂.

The termination condition for the BCD/BCPD algorithm can be that the difference

between the consecutive objective function values is less than a small number ϵ, that is, |Fk−

Fk−1| < ϵ, where Fk = L(Gk,Bk
1,B

k
2,B

k
3, α

k) +R(Gk,Bk
1,B

k
2,B

k
3). The tolerance ϵ can be

set to a sufficiently small value. Another possible termination condition is that the iteration

number of the algorithms attains the maximum number of iterations δ, which can be set to

a sufficiently large value. In this study, we set ϵ = 10−3 and δ = 500. Whichever condition

is met first, the algorithms will be terminated. Note that the optimization criterion in (6) is

nonconvex. Thus, we usually try multiple starting points and choose the estimation result

that shows the lowest objective function value.

Theorem 2 indicates that the BCPD algorithm has a global convergence property, which

implies that it converges to a critical point in the optimization problem (6) with any ini-

tialization.

Theorem 2 (Global convergence). The sequence generated by the proposed BCPD algo-

rithm converges to a critical point in the optimization problem (6).

The proof of Theorems 1 and 2 can be found in the supplementary material. To an-

alyze the scalability of the proposed algorithm, we explore its computational complexity.

Consider a D-dimensional coefficient tensor B0 ∈ RP1×···×PD processed by the proposed

algorithms. The complexity of CP decomposition of B0 mainly hinges on the rank R, the

number of dimensions D, and the size of each dimension Pd, resulting in a complexity of
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O(DR
∏D

d=1 Pd) per iteration when using the alternating least squares (ALS) method, com-

monly employed for such decompositions (Battaglino et al., 2018). When all mode ranks

{Rd}Dd=1 are set equal to R, Tucker decomposition achieves a complexity comparable to

that of CP decomposition by utilizing the higher-order orthogonal iteration (HOOI) algo-

rithm, which also employs the alternating least squares (ALS) method (Kolda and Bader,

2009). Specifically, for a three-dimensional tensor (D = 3) considered in this article, the

complexity of CP decomposition is O(R × P1 × P2 × P3) per iteration, and a comparable

calculation applies to Tucker decomposition.

The computational complexity is also affected by the number of iterations required for

the BCD/BCPD algorithm to converge, as determined by the convergence criteria outlined

in Algorithms 1 and 2. Assuming the convergence criterion specifies that the optimality

gap must be reduced to below a tolerance ϵ̃, and considering there are no inner iterations

within each block of the BCD/BCPD algorithm’s outer while loop–where each block di-

rectly proceeds to a single gradient step–the number of iterations needed for convergence

is approximately O(1/ϵ̃) due to the convex nature of the block’s objective function. More

detailed discussion of the convergence speed of BCD and BCPD can be found in Hong et al.

(2017) and Jeong et al. (2023).

4 Simulation Study

In this section, we demonstrate the superiority of the proposed methods using synthetic

datasets over other alternatives.

4.1 Data Generation

We first generate three-dimensional process data for n products with P1 process variables,

P2 stages, and P3 measurement points, denoted by {Xi ∈ RP1×P2×P3}ni=1. Here, we conduct

experiments for the cases of n = 200, 300, 500 with (P1, P2, P3) = (7, 8, 5) and (9, 10, 10). We

also consider two types of correlation structures: (a) independent and identically distributed

(i.i.d.) and (b) stage correlated cases. For the first structure, all the elements of Xi are

generated from an i.i.d. standard normal distribution. For the second structure, we set

the correlation between x:p2p3 and x:p2′p3 as 0.5|p2−p2′| for every p3 ∈ {1, . . . , P3}, where
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p2, p
′
2 = 1, . . . , P2 and p2 ̸= p2

′.

Next, we generate underlying regression coefficient tensors B ∈ RP1×P2×P3 for both the

CP-based method (use a subscript “C”) and the Tucker-based method (use a subscript “T”).

The coefficient tensor BC is constructed from three basis matrices BC,1 ∈ RP1×3,BC,2 ∈

RP2×3, and BC,3 ∈ RP3×3 where (P1, P2, P3) = (7, 8, 5) and (9, 10, 10), all the elements of

which are randomly generated from a uniform distribution Unif(−1, 1). We then let the

odd rows of BC,1 and the even rows of BC,2 be zeros. In a similar manner, the coefficient

tensor BT is constructed from one core tensor and three factor matrices: GT ∈ R2×1×2,

BT,1 ∈ RP1×2,BT,2 ∈ RP2×1, and BT,3 ∈ RP3×2 where (P1, P2, P3) = (7, 8, 5) and (9, 10, 10),

all the elements of which are randomly generated from a uniform distribution Unif(−1, 1).

Similar to BC , the odd rows of BT,1 and the even rows of BT,2 are set to zeros. Hence, we

have four types of synthetic datasets. The datasets {Xi, yC,i}ni=1 of a tensor size 7× 8× 5

designated as “DataCP1” and a tensor size 9× 10× 10 as “DataCP2” are used to validate

the performance of the proposed CP-based method. The datasets {Xi, yT,i}ni=1 of a tensor

size 7 × 8 × 5 entitled “DataTucker1” and a tensor size 9 × 10 × 10 as “DataTucker2” are

used to evaluate the performance of the Tucker-based method. Table 1 summarizes four

types of datasets we used in the simulation study.

Table 1: Types of datasets in the simulation study.

Method
Size of X

7× 8× 5 9× 10× 10

CP DataCP1 DataCP2

Tucker DataTucker1 DataTucker2

The product quality index yi is generated by the following rule: yi = 1 if π(Xi) ≥ 1/2

and 0 otherwise, where π(·) is defined as below:

π(Xi) = P(Yi = 1|Xi) =
exp

[
α+

〈
B,Xi

〉]
1 + exp

[
α+

〈
B,Xi

〉] , (13)

where we set as α = 0, and B = BC or B = BT , depending on which proposed method is

chosen.
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4.2 Implementation

We utilize four benchmark methods to demonstrate the effectiveness of the proposed meth-

ods.

(1) Benchmark I is an extension of Structured LASSO proposed by Zhao and Leng (2014).

Structured LASSO maps the expectation of a normally distributed response variable to

an explanatory matrix and decomposes the coefficient matrix as a bilinear product of two

vectors. It separately penalizes the two vectors using the ℓ1 norm to inspire two-dimensional

sparsity. Structured LASSO is a two-dimensional variable selection method for applications

where explanatory variables are matrices. To apply it to applications where independent

variables are tensors such as the ones considered in this article, we first extend it to a logistic

tensor regression model. Next, we decompose the coefficient tensor as a product of three

vectors and penalize two of them using the ℓ1 norm to induce two-dimensional sparsity. It

can be easily shown that this benchmark model (i.e., the revised Structured LASSO) is a

special case of the methods proposed in this article where the rank of the coefficient tensor

is one for the CP-based model and (1, 1, 1) for the Tucker-based model. Also, both CP-

and Tucker-based models are same when their corresponding rank of a coefficient tensor is

one and (1, 1, 1), respectively.

(2) Benchmark II is a two-step sequential selection method that first identifies the in-

formative process variables and then crucial stages. Similar to the method proposed in

this article, Benchmark II is a logistic regression model with an explanatory variable of a

tensor form. To achieve the goal of two-dimensional variable selection, we first penalize

the Frobenius norm of each horizontal slice (a matrix) of the coefficient tensor to identify

informative process variables. Next, we remove the data of these non-informative process

variables from the explanatory tensor. Then, we build another logistic tensor regression

model and penalize the Frobenius norm of each lateral slice (a matrix) of the coefficient

tensor to select the crucial stages.

(3) Benchmark III is another two-step sequential selection method that is the same as

Benchmark II except that it identifies the crucial stages first and then the informative

process variables.
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(4) Benchmark IV is a two-dimensional variable selection method that simultaneously

identifies process variables and stages when process data is of a matrix form (Jeong and

Fang, 2022). Since the benchmark requires process data to be a matrix form, we follow the

procedure in Jeong and Fang (2022) that transforms each process tensor Xi ∈ RP1×P2×P3

into a matrix Xi ∈ RP1×P2 by taking the average of the time-series signal of each process

variable (at each stage location) and using the mean value to represent the whole signal.

We apply the benchmarks, denoted as “Benchmarks I, II, III, IV”, as well as our pro-

posed methods, denoted as “CP” and “Tucker”, to the generated datasets with superim-

posed random noise, i.e., {Xi + Ei, yC,i}ni=1 and {Xi + Ei, yT,i}ni=1, respectively, where Ei is

a random noisy tensor whose elements are randomly generated from N(0, σ2). In this sim-

ulation study, we experiment all the methods with multiple noise levels: σ = 0.2, 0.4, 0.6.

Also, we use the logistic regression model to identify the crucial process variables and their

stage locations that are responsible for product defects because the quality indices yC,i and

yT,i are binary variables.

Since the optimization criterion in (6) is nonconvex, we need to try multiple initial points

and choose the best model that provides the lowest loss function value. However, this pro-

cess may be time-consuming. To save computation time, we propose the following heuristic

initialization method. The method works by first regressing yi against each element of

Xi using logistic regression and constructing the regression coefficient tensor B̃. Next, the

tensor B̃ is expanded using the CP/Tucker decomposition (depending on which method

is implemented, that is, the CP- or Tucker-based method), and the results (basis/factor

matrices and the core tensor) are used as the initial point of the proposed BCPD algorithm.

The rank used for the CP/Tucker decomposition and tuning parameter are selected using

AICc (discussed in Section 2). The algorithmic parameters for the termination condition

are set as ϵ = 10−3 and δ = 500. We use a constant step size τj = 10−3, j = 0, . . . , 4 for

model training.

We evaluate the performance of our proposed methods and the four benchmarks through

selection accuracy and precision (or stability) of identifying the crucial process variables

and their stage locations. The accuracy is calculated as the ratio of “TP + TN” to “the

number of horizontal slices + the number of lateral slices” of the coefficient tensor, where

TP represents “True Positive”, which is the number of important horizontal and lateral
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slices that are selected correctly, and TN means “True Negative”, which is the number of

non-important horizontal and lateral slices that are removed correctly. We summarize the

statistics for performance evaluation as follows:

TPR =
TP

TP + FN
, TNR =

TN

FP + TN
, (14)

where FN is “False Negative”, FP denotes “False Positive”, and “R” stands for “Rate”.

Thus, it holds that FNR = 1− TPR and FPR = 1− TNR.

We repeat the simulation experiment 30 times and report the average selection accuracy

(representing diagnostic accuracy) and the standard deviation of the selection accuracy

(representing diagnostic precision).

4.3 Results and Analysis

We summarize the diagnostic results in Tables 2–5. Tables 2–5 respectively summarize the

selection accuracy and precision of each method with DataCP1, DataCP2, DataTucker1,

and DataTucker2 in terms of all combinations of scenarios: sample size (n = 200, 300, 500),

noise level (σ = 0.2, 0.4, 0.6), and correlation structure (IID and stage correlation). Fig-

ures 6, 7, and 8 depict the selection accuracy (bar plot) and precision (error bar) for each

method with respect to each scenario in the case of n = 200, 300, 500, respectively.

The diagnostic results indicate that the proposed CP- and Tucker-based methods achieve

higher or comparable selection accuracy and precision than the benchmarks regardless of

whether process data are correlated or not. For example, Tables 2, 3 and Figure 7 show that

the mean accuracy and corresponding standard deviation (SD) for the CP-based method

and four benchmarks are respectively 96.4 (3.8), 92.4 (6.0), 87.1 (8.2), 85.8 (6.5), 77.1 (11.0)

using DataCP1, and for the Tucker-based method and four benchmarks, they are 97.3 (4.8),

97.1 (4.5), 84.0 (8.3), 77.3 (12.5), 80.0 (8.0) using DataTucker1, respectively, when there is

no correlation in the process data and the noise level is set as σ = 0.4 in case of n = 300.

Tables 2 and 3 demonstrate that the accuracy (and SD) for the CP-based method and four

benchmarks are respectively 91.8 (6.7), 85.3 (8.8), 78.7 (8.8), 81.1 (12.3), 73.3 (9.1) using

DataCP1, and for the Tucker-based method and four benchmarks, they are 88.2 (5.4), 87.1

(5.8), 81.6 (7.6), 81.8 (9.7), 76.2 (7.8) using DataTucker1 when there exists correlation in
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(a) DataCP1. (b) DataCP2.

(c) DataTucker1. (d) DataTucker2.

Figure 6: Results of mean accuracy (bar plot) and standard deviation (error bar) for each
method using 200 samples.

(a) DataCP1. (b) DataCP2.

(c) DataTucker1. (d) DataTucker2.

Figure 7: Results of mean accuracy (bar plot) and standard deviation (error bar) for each
method with 300 samples.
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(a) DataCP1. (b) DataCP2.

(c) DataTucker1. (d) DataTucker2.

Figure 8: Results of mean accuracy (bar plot) and standard deviation (error bar) for each
method with 500 samples.

the process data and σ = 0.4 in case of n = 300.

Tables 2–5 as well as Figures 6–8 suggest that our proposed methods tend to perform

better than the benchmarks in terms of both selection accuracy and precision no matter

what the noise level and the sample size are. We believe this is because Benchmark I

does not try to find the true rank, but our proposed methods try to recover the true

model with the true rank. However, the CP-based method tries a limited number of ranks,

and Tucker-based method uses HOSVD rather than testing all rank combinations, so they

somehow show the comparable or slightly worse results with those of Benchmark I. Also,

since Benchmarks II and III select important process variables (or stages) first and then

identify the important stages (or process variables) next, the first procedure negatively

affects the second procedure, which makes the accuracy generally lower than the proposed

methods which select important process variables and stages simultaneously. Moreover,

Benchmark IV shows the low accuracy and precision because it loses some useful information

when transforming the 3D tensor data into a 2D matrix, while our proposed methods

directly uses the 3D tensor data without any transformation, showing the advantage of our

proposed methods.
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Table 2: Mean selection accuracy (%) using DataCP1 with tensors of size (7×8×5) (values
inside parantheses are standard deviations).

n σ Method
IID Stage Correlation

TPR TNR FNR FPR Accuracy TPR TNR FNR FPR Accuracy

200 0.2 CP 91.9 (8.9) 97.1 (6.3) 8.1 (8.9) 2.9 (6.3) 94.7 (6.2) 84.8 (9.1) 91.3 (9.9) 15.2 (9.1) 8.8 (9.9) 88.2 (7.2)

Ben I 76.2 (23.5) 95.8 (7.6) 23.8 (23.5) 4.2 (7.6) 86.7 (10.6) 76.7 (14.3) 90.0 (9.5) 23.3 (14.3) 10.0 (9.5) 83.8 (7.8)

Ben II 62.4 (15.7) 67.9 (8.5) 37.6 (15.7) 32.1 (8.5) 65.3 (10.7) 66.7 (10.2) 64.2 (10.2) 33.3 (10.2) 35.8 (10.2) 65.3 (7.9)

Ben III 77.1 (9.6) 62.1 (10.6) 22.9 (9.6) 37.9 (10.6) 69.1 (7.7) 80.5 (7.0) 66.3 (9.9) 19.5 (7.0) 33.8 (9.9) 72.9 (7.6)

Ben IV 63.3 (21.4) 83.8 (14.4) 36.7 (21.4) 16.3 (14.4) 74.2 (12.1) 57.6 (18.9) 84.2 (13.5) 42.4 (18.9) 15.8 (13.5) 71.8 (11)

0.4 CP 91.9 (10.4) 95.4 (9.0) 8.1 (10.4) 4.6 (9.0) 93.8 (8.0) 80.0 (11.6) 91.3 (9.4) 20.0 (11.6) 8.8 (9.4) 86.0 (6.9)

Ben I 79.0 (16.2) 96.3 (7.4) 21.0 (16.2) 3.8 (7.4) 88.2 (8.5) 66.7 (23.8) 88.8 (10.6) 33.3 (23.8) 11.3 (10.6) 78.4 (10.3)

Ben II 60.0 (14.7) 65.8 (8.6) 40.0 (14.7) 34.2 (8.6) 63.1 (10.5) 61.9 (10.8) 61.3 (9.5) 38.1 (10.8) 38.8 (9.5) 61.6 (8.0)

Ben III 76.2 (10.8) 64.6 (10.4) 23.8 (10.8) 35.4 (10.4) 70.0 (8.9) 76.2 (10.2) 64.2 (8.5) 23.8 (10.2) 35.8 (8.5) 69.8 (8.0)

Ben IV 56.2 (24.6) 84.2 (13.5) 43.8 (24.6) 15.8 (13.5) 71.1 (14.0) 56.7 (22) 81.3 (13.0) 43.3 (22.0) 18.8 (13.0) 69.8 (13.4)

0.6 CP 77.6 (20.8) 95.0 (10.2) 22.4 (20.8) 5.0 (10.2) 86.9 (11.0) 74.3 (16.9) 87.9 (9.0) 25.7 (16.9) 12.1 (9.0) 81.6 (7.4)

Ben I 75.7 (19.9) 97.1 (5.4) 24.3 (19.9) 2.9 (5.4) 87.1 (9.7) 62.4 (26.4) 86.7 (12.3) 37.6 (26.4) 13.3 (12.3) 75.3 (10.5)

Ben II 58.1 (15.9) 67.9 (9.1) 41.9 (15.9) 32.1 (9.1) 63.3 (11.4) 60.5 (9.7) 62.5 (7.3) 39.5 (9.7) 37.5 (7.3) 61.6 (7.2)

Ben III 70.0 (11.5) 66.3 (8.8) 30.0 (11.5) 33.8 (8.8) 68.0 (7.3) 70.5 (11.2) 63.3 (8.0) 29.5 (11.2) 36.7 (8.0) 66.7 (7.6)

Ben IV 53.3 (20.9) 82.1 (17.6) 46.7 (20.9) 17.9 (17.6) 68.7 (14.2) 54.8 (22.5) 76.7 (17.3) 45.2 (22.5) 23.3 (17.3) 66.4 (13.8)

300 0.2 CP 100.0 (0.0) 99.2 (3.2) 0.0 (0.0) 0.8 (3.2) 99.6 (1.7) 98.1 (4.9) 92.5 (7.0) 1.9 (4.9) 7.5 (7.0) 95.1 (4.9)

Ben I 93.8 (8.1) 93.3 (9.1) 6.2 (8.1) 6.7 (9.1) 93.6 (6.7) 91.9 (8.1) 85.8 (7.9) 8.1 (8.1) 14.2 (7.9) 88.7 (6.1)

Ben II 81.0 (8.7) 80.4 (23.1) 19.0 (8.7) 19.6 (23.1) 80.7 (11.4) 79.5 (10.4) 73.8 (22.3) 20.5 (10.4) 26.3 (22.3) 76.4 (9.5)

Ben III 80.5 (8.8) 94.2 (9.7) 19.5 (8.8) 5.8 (9.7) 87.8 (5.8) 72.9 (7.8) 91.3 (15.8) 27.1 (7.8) 8.8 (15.8) 82.7 (9.4)

Ben IV 72.9 (16.9) 83.3 (12.0) 27.1 (16.9) 16.7 (12.0) 78.4 (11.0) 71.9 (18.2) 81.7 (13.8) 28.1 (18.2) 18.3 (13.8) 77.1 (10.7)

0.4 CP 100.0 (0.0) 93.3 (7.1) 0.0 (0.0) 6.7 (7.1) 96.4 (3.8) 98.1 (4.9) 86.3 (10.0) 1.9 (4.9) 13.8 (10.0) 91.8 (6.7)

Ben I 91.4 (13.8) 93.3 (7.1) 8.6 (13.8) 6.7 (7.1) 92.4 (6.0) 91.9 (9.7) 79.6 (12.5) 8.1 (9.7) 20.4 (12.5) 85.3 (8.8)

Ben II 79.5 (11.7) 93.8 (13.0) 20.5 (11.7) 6.3 (13.0) 87.1 (8.2) 76.7 (13.8) 80.4 (19.1) 23.3 (13.8) 19.6 (19.1) 78.7 (8.8)

Ben III 78.6 (9.0) 92.1 (13.7) 21.4 (9.0) 7.9 (13.7) 85.8 (6.5) 71.4 (17.2) 89.6 (16.8) 28.6 (17.2) 10.4 (16.8) 81.1 (12.3)

Ben IV 69.5 (18.7) 83.8 (11.9) 30.5 (18.7) 16.3 (11.9) 77.1 (11.0) 67.6 (15.0) 78.3 (14.7) 32.4 (15.0) 21.7 (14.7) 73.3 (9.1)

0.6 CP 98.1 (6.2) 86.3 (11.1) 1.9 (6.2) 13.8 (11.1) 91.8 (5.4) 94.8 (10.3) 78.8 (9.9) 5.2 (10.3) 21.3 (9.9) 86.2 (6.0)

Ben I 93.3 (11.1) 88.8 (11.5) 6.7 (11.1) 11.3 (11.5) 90.9 (6.7) 87.1 (13.7) 78.8 (12.3) 12.9 (13.7) 21.3 (12.3) 82.7 (8.1)

Ben II 77.1 (12.8) 97.9 (4.7) 22.9 (12.8) 2.1 (4.7) 88.2 (6.5) 67.6 (13.0) 90.4 (9.1) 32.4 (13.0) 9.6 (9.1) 79.8 (5.9)

Ben III 66.7 (22.3) 87.9 (21.4) 33.3 (22.3) 12.1 (21.4) 78.0 (13.5) 73.8 (14.1) 86.7 (17.7) 26.2 (14.1) 13.3 (17.7) 80.7 (10.4)

Ben IV 63.3 (19.4) 77.5 (17.5) 36.7 (19.4) 22.5 (17.5) 70.9 (14.4) 65.7 (16.6) 76.3 (13.7) 34.3 (16.6) 23.8 (13.7) 71.3 (9.9)

500 0.2 CP 100.0 (0.0) 97.1 (6.3) 0.0 (0.0) 2.9 (6.3) 98.4 (3.4) 100.0 (0.0) 94.6 (6.3) 0.0 (0.0) 5.4 (6.3) 97.1 (3.4)

Ben I 99.5 (2.6) 89.2 (14.6) 0.5 (2.6) 10.8 (14.6) 94.0 (8.5) 99.0 (3.6) 82.9 (13.3) 1.0 (3.6) 17.1 (13.3) 90.4 (7.8)

Ben II 100.0 (0.0) 97.1 (6.3) 0.0 (0.0) 2.9 (6.3) 98.4 (3.4) 100.0 (0.0) 94.6 (7.1) 0.0 (0.0) 5.4 (7.1) 97.1 (3.8)

Ben III 99.5 (2.6) 97.9 (4.7) 0.5 (2.6) 2.1 (4.7) 98.7 (2.7) 89.5 (8.3) 84.2 (21.8) 10.5 (8.3) 15.8 (21.8) 86.7 (13.1)

Ben IV 88.1 (15.0) 80.4 (20.7) 11.9 (15.0) 19.6 (20.7) 84.0 (14.8) 88.6 (12.7) 80.8 (11.2) 11.4 (12.7) 19.2 (11.2) 84.4 (7.5)

0.4 CP 100.0 (0.0) 69.2 (10.8) 0.0 (0.0) 30.8 (10.8) 83.6 (5.7) 100.0 (0.0) 71.3 (11.0) 0.0 (0.0) 28.8 (11) 84.7 (5.8)

Ben I 99.5 (2.6) 79.6 (15.6) 0.5 (2.6) 20.4 (15.6) 88.9 (8.1) 98.1 (4.9) 72.5 (14.1) 1.9 (4.9) 27.5 (14.1) 84.4 (6.6)

Ben II 100.0 (0.0) 66.3 (19.7) 0.0 (0.0) 33.8 (19.7) 82.0 (10.5) 100.0 (0.0) 65.8 (12.7) 0.0 (0.0) 34.2 (12.7) 81.8 (6.8)

Ben III 99.0 (5.2) 83.8 (15.8) 1.0 (5.2) 16.3 (15.8) 90.9 (8.3) 87.6 (7.2) 72.5 (26.9) 12.4 (7.2) 27.5 (26.9) 79.6 (15.2)

Ben IV 87.1 (14.7) 78.3 (21.5) 12.9 (14.7) 21.7 (21.5) 82.4 (14.6) 81.9 (14.5) 76.3 (15.5) 18.1 (14.5) 23.8 (15.5) 78.9 (10.1)

0.6 CP 100.0 (0.0) 68.3 (22.0) 0.0 (0.0) 31.7 (22.0) 83.1 (11.7) 100.0 (0.0) 59.6 (14.9) 0.0 (0.0) 40.4 (14.9) 78.4 (8.0)

Ben I 99.0 (3.6) 82.1 (20.9) 1.0 (3.6) 17.9 (20.9) 90.0 (11.0) 97.1 (5.8) 60.8 (15.3) 2.9 (5.8) 39.2 (15.3) 77.8 (8.3)

Ben II 99.5 (2.6) 77.9 (26.4) 0.5 (2.6) 22.1 (26.4) 88.0 (13.9) 98.6 (4.4) 62.1 (16.6) 1.4 (4.4) 37.9 (16.6) 79.1 (8.2)

Ben III 97.1 (5.8) 71.3 (21.1) 2.9 (5.8) 28.8 (21.1) 83.3 (10.0) 85.7 (6.5) 72.9 (26.7) 14.3 (6.5) 27.1 (26.7) 78.9 (14.2)

Ben IV 81.9 (16.7) 80.0 (18.2) 18.1 (16.7) 20.0 (18.2) 80.9 (13.9) 77.6 (14.9) 68.8 (20.4) 22.4 (14.9) 31.3 (20.4) 72.9 (12.9)

Additionally, Tables 2–5 and Figures 6–8 also indicate that both selection accuracy and

precision decrease as the noise level increases. For instance, Table 3 exhibits that when

there exists correlation in the process data, the mean selection accuracy (and SD) of the

Tucker-based method are 92.9 (3.5), 88.2 (5.4), and 82.7 (6.7) for σ equaling 0.2, 0.4, and

0.6, respectively, using DataTucker1 in presence of stage correlation in case of n = 300.

A similar pattern can also be observed in the CP-based method. This is reasonable since

a higher noise level implies more noisy data used, and thus the selection accuracy and

precision are compromised.

Furthermore, Tables 2–5 and Figures 6–8 show that the selection accuracy and precision

of the proposed methods are usually worse when the process data are with correlation than

the case without correlation. For example, in Table 2, when σ = 0.6 for DataCP1, the
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Table 3: Mean selection accuracy (%) using DataTucker1 with tensors of size (7 × 8 × 5)
(values inside parantheses are standard deviations).

n σ Method
IID Stage Correlation

TPR TNR FNR FPR Accuracy TPR TNR FNR FPR Accuracy

200 0.2 Tucker 82.9 (18.5) 99.2 (3.2) 17.1 (18.5) 0.8 (3.2) 91.6 (8.4) 81 (16.1) 98.3 (4.3) 19.0 (16.1) 1.7 (4.3) 90.2 (7.8)

Ben I 87.6 (7.2) 98.8 (3.8) 12.4 (7.2) 1.3 (3.8) 93.6 (3.3) 83.8 (16.7) 92.9 (8.5) 16.2 (16.7) 7.1 (8.5) 88.7 (8.4)

Ben II 70.5 (6.4) 64.6 (11.4) 29.5 (6.4) 35.4 (11.4) 67.3 (7.3) 64.3 (9.0) 61.7 (10.9) 35.7 (9.0) 38.3 (10.9) 62.9 (7.4)

Ben III 99.5 (2.6) 18.8 (9.7) 0.5 (2.6) 81.3 (9.7) 56.4 (5.5) 72.9 (9.5) 58.8 (7.4) 27.1 (9.5) 41.3 (7.4) 65.3 (7.1)

Ben IV 70.0 (12.6) 87.5 (11.8) 30.0 (12.6) 12.5 (11.8) 79.3 (9.8) 64.3 (12.9) 84.6 (14.2) 35.7 (12.9) 15.4 (14.2) 75.1 (8.6)

0.4 Tucker 89.5 (9.9) 99.2 (3.2) 10.5 (9.9) 0.8 (3.2) 94.7 (4.8) 84.3 (6.9) 89.6 (8.7) 15.7 (6.9) 10.4 (8.7) 87.1 (5.5)

Ben I 88.6 (9.5) 97.9 (4.7) 11.4 (9.5) 2.1 (4.7) 93.6 (4.5) 75.2 (27) 89.2 (9.7) 24.8 (27) 10.8 (9.7) 82.7 (11.4)

Ben II 70.5 (5.2) 63.3 (9.2) 29.5 (5.2) 36.7 (9.2) 66.7 (6.1) 66.7 (10.8) 66.3 (7.4) 33.3 (10.8) 33.8 (7.4) 66.4 (7.7)

Ben III 98.1 (4.9) 20.0 (7.0) 1.9 (4.9) 80.0 (7.0) 56.4 (5.2) 72.4 (12.4) 60.0 (8.3) 27.6 (12.4) 40.0 (8.3) 65.8 (7.6)

Ben IV 69.5 (12.3) 87.9 (11.6) 30.5 (12.3) 12.1 (11.6) 79.3 (9.0) 56.7 (17.0) 84.6 (15.6) 43.3 (17.0) 15.4 (15.6) 71.6 (10.6)

0.6 Tucker 81.4 (26.8) 98.8 (3.8) 18.6 (26.8) 1.3 (3.8) 90.7 (12.5) 72.9 (30.3) 87.1 (10.1) 27.1 (30.3) 12.9 (10.1) 80.4 (12.6)

Ben I 89.5 (18.7) 97.5 (6.1) 10.5 (18.7) 2.5 (6.1) 93.8 (9.4) 65.2 (34.3) 87.5 (10.4) 34.8 (34.3) 12.5 (10.4) 77.1 (13.6)

Ben II 67.1 (9.3) 63.8 (10.0) 32.9 (9.3) 36.3 (10.0) 65.3 (7.5) 59.0 (13.4) 61.7 (9.2) 41.0 (13.4) 38.3 (9.2) 60.4 (9.7)

Ben III 97.6 (5.4) 19.2 (7.1) 2.4 (5.4) 80.8 (7.1) 55.8 (5.4) 68.1 (15.3) 58.8 (7.4) 31.9 (15.3) 41.3 (7.4) 63.1 (7.4)

Ben IV 64.8 (17.5) 83.3 (13.3) 35.2 (17.5) 16.7 (13.3) 74.7 (12.1) 49.5 (16.2) 80.8 (16.7) 50.5 (16.2) 19.2 (16.7) 66.2 (12.2)

300 0.2 Tucker 92.9 (7.3) 100.0 (0.0) 7.1 (7.3) 0.0 (0.0) 96.7 (3.4) 87.1 (4.4) 97.9 (4.7) 12.9 (4.4) 2.1 (4.7) 92.9 (3.5)

Ben I 93.8 (7.2) 99.6 (2.3) 6.2 (7.2) 0.4 (2.3) 96.9 (3.8) 89.0 (6.1) 95.0 (7.0) 11.0 (6.1) 5.0 (7.0) 92.2 (5.3)

Ben II 76.7 (13.3) 78.8 (23.0) 23.3 (13.3) 21.3 (23.0) 77.8 (10.1) 78.1 (9.0) 79.2 (22.6) 21.9 (9.0) 20.8 (22.6) 78.7 (9.7)

Ben III 72.4 (3.6) 70.8 (21.6) 27.6 (3.6) 29.2 (21.6) 71.6 (12.2) 69.5 (8.2) 81.7 (22.2) 30.5 (8.2) 18.3 (22.2) 76.0 (11.8)

Ben IV 74.3 (10.2) 88.3 (11.8) 25.7 (10.2) 11.7 (11.8) 81.8 (7.4) 70.0 (12.1) 85.4 (12.7) 30.0 (12.1) 14.6 (12.7) 78.2 (6.8)

0.4 Tucker 96.2 (7.4) 98.3 (4.3) 3.8 (7.4) 1.7 (4.3) 97.3 (4.8) 88.1 (5.4) 88.3 (8.0) 11.9 (5.4) 11.7 (8.0) 88.2 (5.4)

Ben I 96.7 (6.1) 97.5 (5.1) 3.3 (6.1) 2.5 (5.1) 97.1 (4.5) 88.6 (5.8) 85.8 (7.9) 11.4 (5.8) 14.2 (7.9) 87.1 (5.8)

Ben II 74.3 (12.1) 92.5 (16.6) 25.7 (12.1) 7.5 (16.6) 84.0 (8.3) 69.5 (11.1) 92.1 (12.1) 30.5 (11.1) 7.9 (12.1) 81.6 (7.6)

Ben III 72.4 (6.4) 81.7 (22.2) 27.6 (6.4) 18.3 (22.2) 77.3 (12.5) 71.4 (11.9) 90.8 (15.4) 28.6 (11.9) 9.2 (15.4) 81.8 (9.7)

Ben IV 71.4 (9.9) 87.5 (12.7) 28.6 (9.9) 12.5 (12.7) 80.0 (8.0) 68.1 (13.4) 83.3 (13.3) 31.9 (13.4) 16.7 (13.3) 76.2 (7.8)

0.6 Tucker 96.7 (8.1) 92.1 (7.7) 3.3 (8.1) 7.9 (7.7) 94.2 (4.5) 88.6 (6.9) 77.5 (10.6) 11.4 (6.9) 22.5 (10.6) 82.7 (6.7)

Ben I 98.6 (4.4) 92.1 (7.0) 1.4 (4.4) 7.9 (7.0) 95.1 (3.5) 88.6 (8.7) 75.8 (11.8) 11.4 (8.7) 24.2 (11.8) 81.8 (7.0)

Ben II 68.6 (15.6) 96.3 (9.9) 31.4 (15.6) 3.8 (9.9) 83.3 (7.2) 67.1 (13.1) 91.3 (11.4) 32.9 (13.1) 8.8 (11.4) 80.0 (8.4)

Ben III 72.4 (6.4) 84.2 (19.1) 27.6 (6.4) 15.8 (19.1) 78.7 (10.4) 71.0 (17.4) 92.1 (16.2) 29.0 (17.4) 7.9 (16.2) 82.2 (11.7)

Ben IV 69.0 (12.5) 81.7 (14.9) 31.0 (12.5) 18.3 (14.9) 75.8 (10.7) 62.4 (15.2) 79.6 (13.3) 37.6 (15.2) 20.4 (13.3) 71.6 (8.0)

500 0.2 Tucker 100.0 (0.0) 100.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100.0 (0.0) 96.7 (6.1) 92.5 (7.8) 3.3 (6.1) 7.5 (7.8) 94.4 (6.1)

Ben I 100.0 (0.0) 90.8 (10.3) 0.0 (0.0) 9.2 (10.3) 95.1 (5.5) 100.0 (0.0) 83.8 (12.3) 0.0 (0.0) 16.3 (12.3) 91.3 (6.6)

Ben II 99.5 (2.6) 98.8 (3.8) 0.5 (2.6) 1.3 (3.8) 99.1 (2.9) 90.0 (6.7) 87.9 (8.4) 10.0 (6.7) 12.1 (8.4) 88.9 (4.7)

Ben III 85.2 (2.6) 85.0 (12.5) 14.8 (2.6) 15.0 (12.5) 85.1 (6.5) 84.3 (4.4) 79.2 (17.2) 15.7 (4.4) 20.8 (17.2) 81.6 (10.7)

Ben IV 78.1 (9.7) 89.2 (14.2) 21.9 (9.7) 10.8 (14.2) 84.0 (8.5) 73.3 (9.7) 87.9 (10.1) 26.7 (9.7) 12.1 (10.1) 81.1 (6.8)

0.4 Tucker 100.0 (0.0) 87.1 (9.0) 0.0 (0.0) 12.9 (9.0) 93.1 (4.8) 97.6 (5.4) 77.1 (9.3) 2.4 (5.4) 22.9 (9.3) 86.7 (5.0)

Ben I 100.0 (0.0) 84.6 (9.7) 0.0 (0.0) 15.4 (9.7) 91.8 (5.2) 99.5 (2.6) 70.8 (11.1) 0.5 (2.6) 29.2 (11.1) 84.2 (6.2)

Ben II 100.0 (0.0) 85.0 (14.5) 0.0 (0.0) 15.0 (14.5) 92.0 (7.7) 94.8 (7.0) 70.0 (14.5) 5.2 (7.0) 30.0 (14.5) 81.6 (6.9)

Ben III 86.7 (5.2) 62.5 (13.9) 13.3 (5.2) 37.5 (13.9) 73.8 (8.4) 84.8 (3.6) 61.3 (19.2) 15.2 (3.6) 38.8 (19.2) 72.2 (10.9)

Ben IV 77.1 (10.3) 84.2 (16.1) 22.9 (10.3) 15.8 (16.1) 80.9 (8.5) 72.4 (10.6) 80.4 (14.6) 27.6 (10.6) 19.6 (14.6) 76.7 (7.8)

0.6 Tucker 100.0 (0.0) 77.9 (14.2) 0.0 (0.0) 22.1 (14.2) 88.2 (7.6) 93.8 (7.2) 67.9 (13.0) 6.2 (7.2) 32.1 (13.0) 80.0 (5.5)

Ben I 100.0 (0.0) 75.8 (13.1) 0.0 (0.0) 24.2 (13.1) 87.1 (7.0) 96.2 (6.4) 61.3 (12.0) 3.8 (6.4) 38.8 (12.0) 77.6 (6.4)

Ben II 97.1 (7.9) 67.9 (20.7) 2.9 (7.9) 32.1 (20.7) 81.6 (9.4) 95.7 (6.7) 58.3 (19.2) 4.3 (6.7) 41.7 (19.2) 75.8 (8.8)

Ben III 87.1 (10.2) 73.3 (22.7) 12.9 (10.2) 26.7 (22.7) 79.8 (12.4) 85.2 (2.6) 65.4 (27.2) 14.8 (2.6) 34.6 (27.2) 74.7 (14.3)

Ben IV 73.8 (12.5) 82.1 (16.6) 26.2 (12.5) 17.9 (16.6) 78.2 (8.4) 70.5 (11.2) 77.5 (15.9) 29.5 (11.2) 22.5 (15.9) 74.2 (9.5)

mean selection accuracy (and SD) of the CP-based method is 91.8 (5.4) when there is no

correlation, while it is 86.2 (6.0) when the process data have correlation in case of n = 300.

As another example, in Table 3, when σ = 0.6 for DataTucker1, the mean selection accuracy

(and SD) of the Tucker-based method is 94.2 (4.5) when there is no correlation, while it is

82.7 (6.7) when the process data are correlated. This is reasonable because the existence of

correlation usually compromises the performance of statistical variable selection methods.

Lastly, Tables 2–5 and Figures 6–8 indicate that there is a clear trend that the selection

accuracy of the proposed methods and other alternatives increase as sample size increases.

This occurs because a larger number of samples lead to more accurate model estimation,

consequently yielding higher selection accuracy. Also, when the size of tensors increases

from (7× 8× 5) to (9× 10× 10), the selection accuracy deteriorates. Similar to the above
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Table 4: Mean selection accuracy (%) using DataCP2 with tensors of size (9 × 10 × 10)
(values inside parantheses are standard deviations).

n σ Method
IID Stage Correlation

TPR TNR FNR FPR Accuracy TPR TNR FNR FPR Accuracy

200 0.2 CP 63.3 (11.8) 85.7 (11.4) 36.7 (11.8) 14.3 (11.4) 74.5 (9.6) 58.0 (13.5) 81.3 (13.6) 42.0 (13.5) 18.7 (13.6) 69.7 (12.8)

Ben I 63.0 (14.7) 70.3 (21.1) 37.0 (14.7) 29.7 (21.1) 66.7 (12.9) 55.3 (16.3) 70.3 (17.1) 44.7 (16.3) 29.7 (17.1) 62.8 (15.0)

Ben II 62.0 (11.0) 64.3 (17.0) 38.0 (11.0) 35.7 (17.0) 63.2 (10.9) 57.0 (9.5) 60.3 (19.0) 43.0 (9.5) 39.7 (19.0) 58.7 (12.5)

Ben III 60.7 (9.4) 63.7 (16.9) 39.3 (9.4) 36.3 (16.9) 62.2 (11.3) 61.3 (10.1) 58.0 (13.5) 38.7 (10.1) 42.0 (13.5) 59.7 (10.0)

Ben IV 23.0 (16.8) 81.0 (11.2) 77.0 (16.8) 19.0 (11.2) 52.0 (8.6) 16.7 (16.0) 84.0 (15.7) 83.3 (16.0) 16.0 (15.7) 50.3 (9.5)

0.4 CP 61.0 (17.1) 79.3 (12.3) 39.0 (17.1) 20.7 (12.3) 70.2 (13.2) 65.3 (11.4) 81.3 (18.7) 34.7 (11.4) 18.7 (18.7) 73.3 (11.3)

Ben I 57.0 (18.6) 66.7 (19.9) 43.0 (18.6) 33.3 (19.9) 61.8 (15.6) 56.3 (14.0) 62.0 (23.4) 43.7 (14.0) 38.0 (23.4) 59.2 (15.5)

Ben II 57.0 (7.5) 59.3 (15.1) 43.0 (7.5) 40.7 (15.1) 58.2 (8.7) 54.3 (9.4) 63.7 (20.4) 45.7 (9.4) 36.3 (20.4) 59.0 (13.0)

Ben III 56.0 (8.9) 58.7 (12.0) 44.0 (8.9) 41.3 (12.0) 57.3 (7.4) 58.0 (6.6) 62.3 (16.5) 42.0 (6.6) 37.7 (16.5) 60.2 (10.0)

Ben IV 18.0 (13.5) 79.0 (16.7) 82.0 (13.5) 21.0 (16.7) 48.5 (7.7) 17.0 (12.9) 81.3 (15.0) 83.0 (12.9) 18.7 (15.0) 49.2 (9.2)

0.6 CP 58.0 (15.4) 68.3 (17.8) 42.0 (15.4) 31.7 (17.8) 63.2 (13.5) 56.3 (12.2) 72.0 (22.3) 43.7 (12.2) 28.0 (22.3) 64.2 (15.7)

Ben I 54.7 (21.1) 60.7 (18.9) 45.3 (21.1) 39.3 (18.9) 57.7 (17.1) 57.7 (17.2) 59.3 (25.9) 42.3 (17.2) 40.7 (25.9) 58.5 (16.4)

Ben II 55.3 (15.3) 67.0 (16.8) 44.7 (15.3) 33.0 (16.8) 61.2 (14.1) 51.3 (14.3) 66.3 (16.1) 48.7 (14.3) 33.7 (16.1) 58.8 (13.3)

Ben III 53.7 (11.3) 65.3 (17.6) 46.3 (11.3) 34.7 (17.6) 59.5 (13.0) 54.0 (13.0) 66.7 (15.8) 46.0 (13.0) 33.3 (15.8) 60.3 (12.0)

Ben IV 18.7 (11.7) 75.7 (9.7) 81.3 (11.7) 24.3 (9.7) 47.2 (5.8) 18.7 (12.5) 78.7 (13.6) 81.3 (12.5) 21.3 (13.6) 48.7 (9.6)

300 0.2 CP 72.7 (5.8) 90.7 (7.4) 27.3 (5.8) 9.3 (7.4) 81.7 (6.1) 68.7 (10.4) 85.3 (11.4) 31.3 (10.4) 14.7 (11.4) 77.0 (10.2)

Ben I 69.7 (11.9) 81.3 (17.4) 30.3 (11.9) 18.7 (17.4) 75.5 (13.0) 64.7 (16.6) 74.3 (19.1) 35.3 (16.6) 25.7 (19.1) 69.5 (16.3)

Ben II 69.7 (8.5) 74.3 (13.0) 30.3 (8.5) 25.7 (13.0) 72.0 (8.9) 72.3 (10.1) 72.3 (13.3) 27.7 (10.1) 27.7 (13.3) 72.3 (10.1)

Ben III 73.3 (9.2) 81.0 (12.1) 26.7 (9.2) 19.0 (12.1) 77.2 (9.1) 71.7 (7.0) 73.7 (13.3) 28.3 (7.0) 26.3 (13.3) 72.7 (7.5)

Ben IV 21.0 (14.2) 81.7 (11.5) 79.0 (14.2) 18.3 (11.5) 51.3 (8.1) 19.7 (14.0) 83.7 (13.8) 80.3 (14.0) 16.3 (13.8) 51.7 (9.0)

0.4 CP 71.7 (6.5) 88.0 (10.0) 28.3 (6.5) 12.0 (10.0) 79.8 (7.6) 65.3 (9.4) 81.0 (14.0) 34.7 (9.4) 19.0 (14.0) 73.2 (11.1)

Ben I 71.3 (11.7) 76.7 (19.9) 28.7 (11.7) 23.3 (19.9) 74.0 (12.4) 62.0 (14.9) 71.7 (19.8) 38.0 (14.9) 28.3 (19.8) 66.8 (15.9)

Ben II 68.3 (9.1) 61.3 (13.6) 31.7 (9.1) 38.7 (13.6) 64.8 (10.2) 68.0 (8.5) 69.3 (12.8) 32.0 (8.5) 30.7 (12.8) 68.7 (8.1)

Ben III 68.7 (9.7) 71.3 (13.6) 31.3 (9.7) 28.7 (13.6) 70.0 (10.0) 69.3 (8.3) 73.0 (13.2) 30.7 (8.3) 27.0 (13.2) 71.2 (9.2)

Ben IV 17.3 (14.4) 83.3 (13.2) 82.7 (14.4) 16.7 (13.2) 50.3 (9.0) 24.3 (14.5) 81.7 (14.2) 75.7 (14.5) 18.3 (14.2) 53.0 (8.7)

0.6 CP 69.3 (13.6) 84.0 (17.1) 30.7 (13.6) 16.0 (17.1) 76.7 (14.7) 65.0 (11.4) 78.0 (12.1) 35.0 (11.4) 22.0 (12.1) 71.5 (10.8)

Ben I 73.0 (12.4) 68.7 (23.0) 27.0 (12.4) 31.3 (23.0) 70.8 (15.4) 66.0 (16.1) 6.07 (20.7) 34.0 (16.1) 33.0 (20.7) 66.5 (15.3)

Ben II 63.7 (9.6) 70.0 (12.6) 36.3 (9.6) 30.0 (12.6) 66.8 (9.2) 66.0 (9.7) 67.7 (13.8) 34.0 (9.7) 32.3 (13.8) 66.8 (10.0)

Ben III 64.7 (12.8) 67.3 (15.5) 35.3 (12.8) 32.7 (15.5) 66.0 (12.1) 66.0 (8.1) 70.0 (13.6) 34.0 (8.1) 30.0 (13.6) 68.0 (9.5)

Ben IV 15.3 (11.1) 84.3 (14.5) 84.7 (11.1) 15.7 (14.5) 49.8 (8.5) 21.0 (15.2) 80.3 (15.0) 79.0 (15.2) 19.7 (15.0) 50.7 (10.2)

500 0.2 CP 89.7 (11.9) 84.3 (15.7) 10.3 (11.9) 15.7 (15.7) 87.0 (13.4) 83.7 (8.9) 78.3 (11.8) 16.3 (8.9) 21.7 (11.8) 81.0 (9.8)

Ben I 82.0 (8.1) 67.0 (13.9) 18.0 (8.1) 33.0 (13.9) 74.5 (9.7) 81.0 (9.9) 70.7 (15.3) 19.0 (9.9) 29.3 (15.3) 75.8 (11.6)

Ben II 84.7 (6.8) 62.0 (13.0) 15.3 (6.8) 38.0 (13.0) 73.3 (9.3) 83.0 (4.7) 62.7 (9.4) 17.0 (4.7) 37.3 (9.4) 72.8 (6.3)

Ben III 83.0 (6.0) 60.3 (13.5) 17.0 (6.0) 39.7 (13.5) 71.7 (8.8) 78.7 (5.7) 54.0 (11.6) 21.3 (5.7) 46.0 (11.6) 66.3 (8.4)

Ben IV 24.3 (14.3) 78.3 (11.5) 75.7 (14.3) 21.7 (11.5) 51.3 (8.4) 20.7 (18.9) 80.0 (15.8) 79.3 (18.9) 20.0 (15.8) 50.3 (9.8)

0.4 CP 86.0 (10.7) 81.3 (12.8) 14.0 (10.7) 18.7 (12.8) 83.7 (11.4) 79.3 (9.1) 71.0 (12.1) 20.7 (9.1) 29.0 (12.1) 75.2 (9.2)

Ben I 78.7 (12.2) 66.0 (14.3) 21.3 (12.2) 34.0 (14.3) 72.3 (12.4) 77.3 (13.4) 64.7 (15.0) 22.7 (13.4) 35.3 (15.0) 71.0 (12.7)

Ben II 82.7 (5.2) 61.3 (11.4) 17.3 (5.2) 38.7 (11.4) 72.0 (7.9) 80.0 (5.9) 58.7 (10.1) 20.0 (5.9) 41.3 (10.1) 69.3 (7.2)

Ben III 82.3 (9.0) 61.7 (13.4) 17.7 (9.0) 38.3 (13.4) 72.0 (10.2) 76.7 (7.6) 56.0 (11.3) 23.3 (7.6) 44.0 (11.3) 66.3 (8.3)

Ben IV 21.3 (11.1) 75.3 (10.7) 78.7 (11.1) 24.7 (10.7) 48.3 (8.7) 23.7 (16.7) 77.7 (16.1) 76.3 (16.7) 22.3 (16.1) 50.7 (9.5)

0.6 CP 83.0 (16.6) 77.0 (19.0) 17.0 (16.6) 23.0 (19.0) 80.0 (17.5) 75.0 (10.4) 65.7 (13.3) 25.0 (10.4) 34.3 (13.3) 70.3 (9.9)

Ben I 75.3 (13.3) 59.3 (16.2) 24.7 (13.3) 40.7 (16.2) 67.3 (14.0) 75.7 (9.4) 61.7 (13.7) 24.3 (9.4) 38.3 (13.7) 68.7 (9.4)

Ben II 79.0 (7.1) 60.3 (11.0) 21.0 (7.1) 39.7 (11.0) 69.7 (8.1) 79.0 (5.5) 57.3 (10.5) 21.0 (5.5) 42.7 (10.5) 68.2 (6.8)

Ben III 78.7 (8.2) 61.7 (13.2) 21.3 (8.2) 38.3 (13.2) 70.2 (10.0) 78.0 (5.5) 58.7 (10.1) 22.0 (5.5) 41.3 (10.1) 68.3 (6.9)

Ben IV 25.7 (15.5) 75.7 (13.8) 74.3 (15.5) 24.3 (13.8) 50.7 (11.3) 19.7 (15.2) 80.7 (16.2) 80.3 (15.2) 19.3 (16.2) 50.2 (9.5)

reasoning, more parameters to be estimated with the same sample sizes exacerbate model

estimation and thus shows lower selection accuracy.
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Table 5: Mean selection accuracy (%) using DataTucker2 with tensors of size (9× 10× 10)
(values inside parantheses are standard deviations).

n σ Method
IID Stage Correlation

TPR TNR FNR FPR Accuracy TPR TNR FNR FPR Accuracy

200 0.2 Tucker 98.0 (4.1) 91.7 (12.6) 2.0 (4.1) 8.3 (12.6) 94.8 (5.9) 89.7 (11.0) 89.3 (7.8) 10.3 (11.0) 10.7 (7.8) 89.5 (5.8)

Ben I 81.7 (21.0) 90.0 (17.6) 18.3 (21.0) 10.0 (17.6) 85.8 (18.2) 85.7 (13.8) 88.7 (10.1) 14.3 (13.8) 11.3 (10.1) 87.2 (6.4)

Ben II 63.0 (8.4) 60.0 (14.1) 37.0 (8.4) 40.0 (14.1) 61.5 (9.6) 60.7 (6.4) 68.0 (16.3) 39.3 (6.4) 32.0 (16.3) 64.3 (9.1)

Ben III 62.3 (7.7) 57.7 (15.2) 37.7 (7.7) 42.3 (15.2) 60.0 (10.6) 58.0 (7.6) 59.3 (13.9) 42.0 (7.6) 40.7 (13.9) 58.7 (8.0)

Ben IV 26.0 (16.7) 79.0 (14.9) 74.0 (16.7) 21.0 (14.9) 52.5 (10.2) 20.0 (16.6) 87.3 (15.7) 80.0 (16.6) 12.7 (15.7) 53.7 (11.0)

0.4 Tucker 93.3 (8.4) 87.7 (14.8) 6.7 (8.4) 12.3 (14.8) 90.5 (6.7) 87.7 (12.8) 83.0 (11.2) 12.3 (12.8) 17.0 (11.2) 85.3 (6.4)

Ben I 88.0 (16.7) 93.0 (14.7) 12.0 (16.7) 7.0 (14.7) 90.5 (13.9) 85.3 (12.5) 86.3 (11.9) 14.7 (12.5) 13.7 (11.9) 85.8 (6.7)

Ben II 59.3 (7.8) 64.0 (14.8) 40.7 (7.8) 36.0 (14.8) 61.7 (9.0) 59.7 (8.1) 75.7 (13.0) 40.3 (8.1) 24.3 (13.0) 67.7 (7.6)

Ben III 59.7 (8.5) 55.7 (14.8) 40.3 (8.5) 44.3 (14.8) 57.7 (10.3) 58.0 (8.1) 69.7 (15.4) 42.0 (8.1) 30.3 (15.4) 63.8 (9.3)

Ben IV 20.3 (16.3) 76.7 (14.0) 79.7 (16.3) 23.3 (14.0) 48.5 (9.8) 21.7 (15.1) 80.7 (12.0) 78.3 (15.1) 19.3 (12.0) 51.2 (9.1)

0.6 Tucker 94.0 (6.2) 78.0 (18.8) 6.0 (6.2) 22.0 (18.8) 86.0 (9.1) 83.3 (12.4) 79.0 (10.9) 16.7 (12.4) 21.0 (10.9) 81.2 (6.5)

Ben I 82.3 (14.5) 90.0 (12.0) 17.7 (14.5) 10.0 (12.0) 86.2 (9.9) 86.0 (11.6) 75.0 (17.2) 14.0 (11.6) 25.0 (17.2) 80.5 (7.7)

Ben II 50.7 (10.5) 66.3 (16.7) 49.3 (10.5) 33.7 (16.7) 58.5 (11.4) 62.0 (11.0) 75.7 (15.0) 38.0 (11.0) 24.3 (15.0) 68.8 (11.1)

Ben III 52.3 (14.1) 64.3 (15.7) 47.7 (14.1) 35.7 (15.7) 58.3 (13.0) 57.0 (9.5) 77.0 (10.9) 43.0 (9.5) 23.0 (10.9) 67.0 (8.7)

Ben IV 17.3 (15.5) 78.0 (14.7) 82.7 (15.5) 22.0 (14.7) 47.7 (9.7) 18.3 (12.9) 81.3 (16.8) 81.7 (12.9) 18.7 (16.8) 49.8 (9.0)

300 0.2 Tucker 97.0 (5.3) 98.0 (4.8) 3.0 (5.3) 2.0 (4.8) 97.5 (3.4) 95.3 (6.8) 90.3 (7.6) 4.7 (6.8) 9.7 (7.6) 92.8 (5.4)

Ben I 92.7 (5.8) 99.3 (2.5) 7.3 (5.8) 0.7 (2.5) 96.0 (3.1) 94.7 (6.8) 92.0 (6.6) 5.3 (6.8) 8.0 (6.6) 93.3 (4.8)

Ben II 72.3 (8.2) 77.0 (18.8) 27.7 (8.2) 23.0 (18.8) 74.7 (12.0) 69.7 (5.6) 70.7 (12.0) 30.3 (5.6) 29.3 (12.0) 70.2 (7.5)

Ben III 71.3 (9.0) 74.3 (15.0) 28.7 (9.0) 25.7 (15.0) 72.8 (11.0) 70.0 (7.4) 74.0 (17.9) 30.0 (7.4) 26.0 (17.9) 72.0 (11.4)

Ben IV 27.0 (15.1) 79.3 (13.9) 73.0 (15.1) 20.7 (13.9) 53.2 (9.6) 22.3 (17.2) 81.7 (15.6) 77.7 (17.2) 18.3 (15.6) 52.0 (10.2)

0.4 Tucker 95.7 (6.3) 95.0 (7.3) 4.3 (6.3) 5.0 (7.3) 95.3 (4.5) 94.7 (7.8) 84.7 (11.1) 5.3 (7.8) 15.3 (11.1) 89.7 (6.4)

Ben I 91.0 (10.3) 94.3 (17.0) 9.0 (10.3) 5.7 (17.0) 92.7 (12.7) 93.7 (7.2) 86.0 (10.4) 6.3 (7.2) 14.0 (10.4) 89.8 (6.2)

Ben II 71.0 (6.6) 70.3 (16.1) 29.0 (6.6) 29.7 (16.1) 70.7 (10.4) 67.3 (6.9) 72.7 (14.1) 32.7 (6.9) 27.3 (14.1) 70.0 (9.1)

Ben III 70.0 (6.9) 72.0 (14.2) 30.0 (6.9) 28.0 (14.2) 71.0 (9.7) 69.3 (7.4) 72.7 (17.4) 30.7 (7.4) 27.3 (17.4) 71.0 (11.3)

Ben IV 26.3 (11.0) 80.7 (13.9) 73.7 (11.0) 19.3 (13.9) 53.5 (9.2) 24.7 (14.8) 77.0 (14.4) 75.3 (14.8) 23.0 (14.4) 50.8 (9.7)

0.6 Tucker 95.0 (5.7) 92.0 (12.1) 5.0 (5.7) 8.0 (12.1) 93.5 (7.2) 93.7 (8.9) 76.0 (12.8) 6.3 (8.9) 24.0 (12.8) 84.8 (5.6)

Ben I 86.3 (19.2) 93.3 (16.5) 13.7 (19.2) 6.7 (16.5) 89.8 (17.3) 93.3 (5.5) 76.3 (10.0) 6.7 (5.5) 23.7 (10.0) 84.8 (5.0)

Ben II 64.7 (9.0) 62.7 (13.1) 35.3 (9.0) 37.3 (13.1) 63.7 (9.4) 69.0 (8.4) 70.3 (15.2) 31.0 (8.4) 29.7 (15.2) 69.7 (10.6)

Ben III 64.3 (13.8) 67.3 (14.8) 35.7 (13.8) 32.7 (14.8) 65.8 (12.3) 69.0 (7.6) 73.7 (15.0) 31.0 (7.6) 26.3 (15.0) 71.3 (10.2)

Ben IV 23.3 (13.2) 78.3 (13.7) 76.7 (13.2) 21.7 (13.7) 50.8 (10.3) 23.3 (12.4) 75.7 (15.5) 76.7 (12.4) 24.3 (15.5) 49.5 (11.2)

500 0.2 Tucker 100.0 (0.0) 100.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100.0 (0.0) 99.0 (3.1) 91.3 (7.8) 1.0 (3.1) 8.7 (7.8) 95.2 (4.8)

Ben I 100.0 (0.0) 94.7 (6.8) 0.0 (0.0) 5.3 (6.8) 97.3 (3.4) 100.0 (0.0) 80.3 (10.7) 0.0 (0.0) 19.7 (10.7) 90.2 (5.3)

Ben II 84.0 (7.7) 63.3 (15.4) 16.0 (7.7) 36.7 (15.4) 73.7 (11.1) 82.3 (4.3) 59.0 (8.8) 17.7 (4.3) 41.0 (8.8) 70.7 (6.3)

Ben III 82.3 (5.7) 59.3 (10.1) 17.7 (5.7) 40.7 (10.1) 70.8 (6.8) 81.7 (6.5) 59.7 (12.5) 18.3 (6.5) 40.3 (12.5) 70.7 (8.6)

Ben IV 23.3 (15.4) 78.3 (15.6) 76.7 (15.4) 21.7 (15.6) 50.8 (10) 21.3 (14.8) 80.3 (15.4) 78.7 (14.8) 19.7 (15.4) 50.8 (8.6)

0.4 Tucker 99.7 (1.8) 98.7 (3.5) 0.3 (1.8) 1.3 (3.5) 99.2 (2.3) 97.3 (4.5) 81.0 (8.0) 2.7 (4.5) 19.0 (8.0) 89.2 (4.9)

Ben I 100.0 (0.0) 93.3 (8.0) 0.0 (0.0) 6.7 (8.0) 96.7 (4.0) 100.0 (0.0) 65.0 (6.3) 0.0 (0.0) 35.0 (6.3) 82.5 (3.1)

Ben II 82.3 (6.3) 62.0 (12.4) 17.7 (6.3) 38.0 (12.4) 72.2 (8.7) 81.7 (4.6) 58.3 (11.5) 18.3 (4.6) 41.7 (11.5) 70.0 (7.8)

Ben III 82.0 (8.5) 61.3 (13.1) 18.0 (8.5) 38.7 (13.1) 71.7 (9.8) 77.7 (7.3) 55.3 (11.4) 22.3 (7.3) 44.7 (11.4) 66.5 (8.7)

Ben IV 21.0 (15.2) 78.0 (16.5) 79.0 (15.2) 22.0 (16.5) 49.5 (10.9) 25.0 (15.5) 69.0 (17.7) 75.0 (15.5) 31.0 (17.7) 47.0 (12.1)

0.6 Tucker 99.0 (3.1) 96.3 (6.7) 1.0 (3.1) 3.7 (6.7) 97.7 (4.1) 96.3 (4.9) 70.7 (6.4) 3.7 (4.9) 29.3 (6.4) 83.5 (3.3)

Ben I 99.3 (2.5) 94.0 (7.7) 0.7 (2.5) 6.0 (7.7) 96.7 (4.4) 100.0 (0.0) 60.3 (6.1) 0.0 (0.0) 39.7 (6.1) 80.2 (3.1)

Ben II 81.3 (7.8) 62.0 (14.0) 18.7 (7.8) 38.0 (14.0) 71.7 (10.4) 81.3 (5.1) 60.3 (9.6) 18.7 (5.1) 39.7 (9.6) 70.8 (7.0)

Ben III 78.3 (10.9) 59.7 (12.2) 21.7 (10.9) 40.3 (12.2) 69.0 (11.0) 76.3 (6.7) 55.7 (13.0) 23.7 (6.7) 44.3 (13.0) 66.0 (9.1)

Ben IV 21.3 (14.6) 78.7 (15.0) 78.7 (14.6) 21.3 (15.0) 50.0 (10.1) 28.3 (14.6) 61.3 (19.4) 71.7 (14.6) 38.7 (19.4) 44.8 (10.1)
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4.4 Convergence Performance

As described by Theorem 2, the proposed BCPD algorithm exhibits global convergence,

meaning that the sequence it generates converges to a critical point in the optimization

problem (6). To empirically verify the global convergence of the BCPD algorithm, we

analyze the changes in the absolute value of the difference between consecutive objective

function values, represented by |Fk − Fk−1|, throughout the iterations. The results con-

sistently reveal a decreasing trend in these values, ultimately converging to zero in all

experimental scenarios, which confirms the algorithm’s global convergence. Figure 9 illus-

trates two examples of the convergence curves: (a) for the IID case with σ = 0.2 and (b)

for the stage correlation case with σ = 0.4, using both DataCP1 and DataTucker1 datasets.

The figure illustrates the mean and standard deviations of these absolute differences across

30 experiments, clearly showing the values diminishing and converging to zero.

(a) IID case with σ = 0.2. (b) Stage correlation case with σ = 0.4.

Figure 9: Illustrations of the global convergence of the BCPD algorithm: the bold line
represents the mean of absolute values of differences between consecutive objective function
values against the number of iterations, and the shaded envelope depicts the standard
deviations around the mean using DataCP1 and DataTucker1 over 30 experiments utilized
in the simulation study.

5 Case Study: Multi-stream High-dimensional Signals

from Successive Rolling Mill Stands

In this section, we validate the effectiveness of our methods using data obtained from

successive rolling mill stands illustrated in Figure 1. The dataset is composed of 490

strip steel products, including 264 good quality products and 226 defective products. The
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product quality index is binary, which is 1 if the product is defective and 0 otherwise.

Following the suggestion from the engineers who work in this field, we focus on nine process

variables: the target speed of rollers, the measured speed of rollers, looper value, the target

force on both side of the rollers, the measured force on the work side of rollers, the measured

force on the transfer side of rollers, roller gap, looper height, and temperature. At each

stage, each of the process variables has a profile or time-series over 1, 500 measurement

points.

5.1 Data Preprocessing

Among 1, 500 measurement points, we drop the first 300 points following the suggestion

from engineers. The first 300 points correspond to the head of a product, which are not often

used to determine if the product is defective or not since the width of the very beginning

segment of the head is usually smaller than the width limit specification. As a result, we

use a 9× 7× 1, 200 process variable tensor Xi for each product i for all i = 1, . . . , 490.

The number of unknown parameters in the coefficient tensor is 75, 600 = 9× 7× 1, 200,

which is extremely large (even if the CP/Tucker decomposition is applied), given that

there are less than 500 historical data samples for model training. Therefore, we first

reduce the number of elements of the process variable tensor Xi by applying principle

component analysis (PCA). In this case study, PCA is conducted as follows: (1) For each

of the 63 process variables, construct matrices, Zl ∈ R490×1200, ∀l = 1, . . . , 63, by stacking

the measurement points of the process variables l from all the 490 products; (2) Scale

each matrix Zl to [−1, 1] individually and then center it by subtracting each of its row

by the column mean of the whole matrix. The standardized matrix is denoted as Z̃l,∀l;

(3) Apply singular value decomposition to Z̃l, i.e., Z̃l = UlDlV
⊤
l , ∀l; (4) Calculate dl,p =∑p

j=1 dl,j/
∑490

i=1 dl,i for each p = 1, . . . , 490, where dl,i’s are the squared diagonal entries of

matrix Dl,∀l; (5) Take the average of dl,p’s for each p, i.e., as d̄p =
∑63

l=1 dl,p/63,∀p; (6)

Choose the number of principal components p by using infp{d̄p ≥ 0.9}. As a result, p is

chosen to be 3; (7) Calculate the PC scores Ỹl ∈ R490×3 as Ỹl = Z̃lṼl, where Ṽl ∈ R1200×3

is composed of the first three columns of Ṽl, ∀l; (8) Reform the tensors X̃i ∈ R9×7×3 from

the matrices {Ỹl ∈ R490×3}63l=1, where X̃i serves as the predictor of the proposed diagnosis

methods,∀i = 1, . . . , 490.
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Table 6: Process Variable Selection Rate (%)

Process variable CP Tucker

Target speed 10 0

Measured speed 20 0

Looper value 80 100

Both side target force 10 10

Work side force 0 0

Transfer force 50 20

Roller gap 20 0

Looper height 30 10

Temperature 10 0

Table 7: Stage Selection Rate (%)

Method 1 2 3 4 5 6 7

CP 10 100 0 50 0 0 50

Tucker 0 100 0 40 0 0 60

5.2 Inplementation Results

To get a stable selection result, we randomly select 400 samples from the entire dataset to

construct a sub-dataset and apply our methods to the sub-dataset to identify important

process variables and their stage locations. We repeat this procedure 10 times and then

compute the selection rates. Any process variables and their stage locations with a selection

rate higher than 50% are considered as important variables and stages that are responsible

for product defects. The selection results for process variables and stages are reported in

Tables 6 and 7, respectively. The ranks selected by AICc are relatively low in this case

study. Specifically, the identified ranks for the CP-based model are either 1 or 2, and they

vary from (1, 1, 1) to (2, 2, 2) for the Tucker-based method.

Tables 6 and 7 indicate that both the CP- and Tucker-based methods select Looper value

as a crucial process variable. The method proposed by Jeong and Fang (2022) selected

three crucial process variables: Looper value, Looper height, and Roller gap. It can be seen

that the process variable(s) selected by our proposed methods is a subset of the process

variables identified by the method (Jeong and Fang, 2022). The authors in Jeong and Fang

(2022) pointed out that the selection results are reasonable since Looper value and Looper

height are used to control the tension of the steel strip between two stages, while Roller

32



gap is used to control the thickness of the steel strip, which also significantly affects the

real-time value of Looper value. These three process variables are coupled and thus pose

significant challenges for the closed-loop control system to adjust their values timely and

correctly. Since our proposed methods identify less process variables whose inappropriate

values might affect the quality of products, they provide more useful information to guide

engineers to revise the feedback control algorithm in the hot rolling mill.

The crucial stage locations identified by the CP- and Tucker-based methods are Stages

2 and 7. It is known that Stages 1–3 of the hot rolling mill respectively have a speed

reducer connected to the rollers to reduce the speed of the driven motors, whereas Stages

4–7 do not have any reducer. Therefore, the moving speed of the steel strip in Stages 4–7 is

much higher than in Stages 1–3. This difference in equipment results in the use of two sets

of control algorithms–one for the low-speed stages and another for the high-speed stages.

It can be seen that the proposed methods select one stage from the low-speed category

and another stage from the high-speed category. Similarly, the selected stages in Jeong

and Fang (2022) are Stages 3, 4, and 6, one stage from the low-speed category and two

stages from the high-speed category. One possible explanation for the disagreement in the

selection of specific stages between the two articles could be attributed to the existence of

exceptionally high correlations (greater than 0.99) among the data from certain stages in

both the low-speed and high-speed categories. It is worth pointing out that the methods

presented in this article identify only one crucial stage in the high-speed category, which is

fewer than the stages identified by Jeong and Fang (2022) in the same category. We believe

this is because Jeong and Fang (2022) transforms the process variable tensor to a matrix

form, which results in the loss of useful information. In contrast, the methods proposed in

this paper utilize tensors to model the process data, preserving information without loss.

6 Conclusions

The root cause diagnosis of product defects often involves the joint identification of in-

formative process variables and their stage locations, which is challenging since process

data are usually three-dimensional (process variable × stage × measurement point). Most

of the existing methods first transfer the 3D process data into a 2D matrix by averaging
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the observations over time, one obvious limitation of which is the loss of information and

thus both accuracy and stability of diagnostic results are compromised. To address this

challenge, this article proposed new tensor-based diagnostic methods that simultaneously

identify the important process variables and their stage locations related to product quality

defects.

The proposed methods are based on penalized tensor regression, which regresses the

quality index of a product against its process tensor data. The quality index can follow any

distribution in the exponential family, so the proposed methods can be applied to various

applications. To address the challenge of estimating a large number of unknown parameters

with a relatively small amount of historical data, we decomposed an unknown coefficient

tensor using the CP and Tucker decompositions, which expand it as a product of several low-

dimensional matrices and a core tensor. It significantly reduces the number of parameters

to be estimated and the number of historical data samples needed for estimation. Also,

employing the tensor decompositions helps to remove or decrease the high correlation among

process variables, stages, and measurement points, thus improving diagnostic accuracy. To

estimate the parameters, we proposed an optimization algorithm with closed-form solutions

and proved its convergence property.

The simulation study was implemented to validate the effectiveness of our proposed

methods. The results indicated that the proposed CP- and Tucker-based methods achieved

higher diagnostic accuracy and precision than the alternatives regardless of whether process

data are correlated or not, and the proposed methods performed better than the benchmarks

under various noise levels. A real-world dataset from successive rolling mill stands was

used to evaluate the performance of the proposed methods as well. The proposed methods

suggest that one crucial process variable and two stages are potentially related to the quality

anomalies of steel strips. This will help engineers revise the feedback control algorithm to

prevent future product quality defects.

7 Data Availability Statement

The data that support the findings of this study are available from the corresponding

author, Dr. Xiaolei Fang, upon reasonable request.
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