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Abstract
Supply chain disruptions and demand disruptions make it challenging for hospital pharmacy managers to determine how
much inventory to have on-hand. Having insufficient inventory leads to drug shortages, while having excess inventory leads
to drug waste. To mitigate drug shortages and waste, hospital pharmacy managers can implement inventory policies that
account for supply chain disruptions and adapt these inventory policies over time to respond to demand disruptions. Demand
disruptions were prevalent during the Covid-19 pandemic. However, it remains unclear how a drug’s shortage-waste weighting
(i.e., concern for shortages versus concern for waste) as well as the duration of and time between supply chain disruptions
influence the benefits (or detriments) of adapting to demand disruptions. We develop an adaptive inventory system (i.e.,
inventory policies change over time) and conduct an extensive numerical analysis using real-world demand data from the
University of Michigan’s Central Pharmacy to address this research question. For a fixed mean duration of and mean time
between supply chain disruptions, we find a drug’s shortage-waste weighting dictates the magnitude of the benefits (or
detriments) of adaptive inventory policies. We create a ranking procedure that provides a way of discerning which drugs are
of most concern and illustrates which policies to update given that a limited number of inventory policies can be updated.
When applying our framework to over 300 drugs, we find a decision-maker needs to update a very small proportion of drugs
(e.g.,< 5%) at any point in time to get the greatest benefits of adaptive inventory policies.

Keywords Inventory management · Supply chain management · Simulation · Pharmaceutical drugs · Healthcare · Operations
research · Operations management

Highlights

• Adaptive inventory system that captures perishability,
supply chain disruptions, and demand disruptions

• Ranking procedure to discern which medications are of
most concern and illustrates which medications to adapt
given that a limited number of inventory policies can be
updated

• For a fixed mean duration of and mean time between
supply chain disruptions, a medication’s shortage-waste
weighting dictates themagnitude of the benefits (or detri-
ments) of adaptive inventory policies

• For a fixed shortage-waste weighting and long-run prob-
ability that the supply chain is disrupted, if adaptive
inventory policies are beneficial, the benefits generally
decrease as the supply chain disruption duration increases

Extended author information available on the last page of the article

• Decision-maker needs to update a very small proportion
of medications (e.g., < 5%) to get the greatest benefits
of adaptive inventory policies

1 Introduction

Hospital pharmacy managers are responsible for determin-
ing how much inventory to have on-hand and when to place
orders. Key aspects that need consideration when making
these inventory decisions are supply chain disruptions and
demand disruptions. A supply chain disruption is a random
amount of time such that the hospital pharmacy is unable to
receive a particular medication [1]. There are many possible
causes of supply chain disruptions in a hospital pharmacy
inventory system (e.g., manufacturing issues, quality issues,
rawmaterials, natural disasters [2–4]). The resiliency of phar-
maceutical supply chains is an active area of concern [5].
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Insufficient inventory during these supply chain disruptions
leads to drug shortages which can increase costs, increase
medication errors, and decrease the quality of care [2, 6,
7]. Shortages in a food inventory system may cause you
to change your recipe and shortages in a concert inventory
system may cause you to miss your favorite band. How-
ever, drug shortages in a hospital pharmacy inventory system
can cause significant drawbacks such as patients experienc-
ing denied/delayed care (e.g., cancelled surgeries) or being
provided with sub-optimal treatment (e.g., substitute med-
ications with less efficacy or more side effects). A simple
solution is stocking more inventory than is needed, but hold-
ing too much inventory leads to waste as medications have
a finite shelf life. For clarity, throughout this research, we
use the term “medication” to refer to a particular pharma-
ceutical medication/SKU (e.g., Labetalol). We use the term
“drug” to describe the drug doses for a particular medication
of interest (e.g., drug shortages [for a particular medication],
drug waste [for a particular medication], holding cost per
day per drug, proportion of drug shortages, proportion of
drugs wasted).

Balancing the drug shortage versus drug waste trade-off
is further complicated by demand disruptions. Demand dis-
ruptions occur when the demand mean is different from
“normal/baseline” (i.e., it increases or decreases) for a ran-
dom or extended amount of time. Demand disruptions were
prevalent during the Covid-19 pandemic (e.g., surges in
demand to treat Covid-19 patients and declines in demand
for other medications due to the cancellation of elective surg-
eries). Failing to adapt to disruptions that increase or decrease
demand often leads to drug shortages and drugwaste, respec-
tively. However, medications differ in their shortage-waste
weighting (i.e., concern for shortages versus concern for
waste) and supply chain disruption profile (i.e., duration of
supply chain disruptions and time between supply chain dis-
ruptions). The duration of a supply chain disruption refers to
the time between when the supply chain disruption begins
and the time that the supply chain disruption ends. The time
between supply chain disruptions refers to the time between
when one supply chain disruption ends and the time that
a new supply chain disruption begins. We are interested in
studying how these differences influence the benefits (or
detriments) of adapting to demand disruptions.

A medication’s shortage-waste weighting defines the
shortage concern versus waste concern for a particular
medication of interest. Defining a medication’s shortage-
waste weighting helps to capture the trade-off between
drug shortages and drug waste. With the varying medica-
tion shortage-waste weightings and supply chain disruption
profiles, simulation modeling is a viable method to assess
the performance of the inventory system given different
inventory policies, such as adaptive inventory policies (i.e.,
inventory policies change over time), are in place.

To analyze the performance of adaptive inventory poli-
cies, we recognize that hospital pharmacy managers decide
how frequently to place orders and how much inventory to
have on-hand. To this end, we develop an adaptive lost-sales
(R, S) periodic review inventory system where R denotes
the length of the review period (i.e., attempt to place an
order every R days) and S denotes the order-up-to level (i.e.,
attempt to place an order up to S every R days). By lost-sales,
we imply that if a patient needs a medication that has zero
inventory on-hand, the demand for that specific medication
is lost and consequently, a shortage cost is incurred. In a
hospital pharmacy setting, this patient who needs a medica-
tion that has zero inventory on-hand may receive a substitute
medication or have delayed/cancelled treatment. By adap-
tive, we imply that the (R, S) inventory policy changes over
time to reflect the shifts in the demand mean. We design
the adaptive inventory system such that it (1) solves for the
(R, S) inventory policy in a hospital pharmacy with supply
chain disruptions, (2) endogenously detects when the inven-
tory policy needs to be updated due to a demand disruption,
and (3) appropriately updates the (R, S) inventory policy.
Contracts, logistics, and resources can make it challenging
to update the (R, S) inventory policy very frequently.We use
themedication’s shortage-waste weighting, the change in the
expected proportion of drug shortages per day, and the change
in the expected proportion of drugs wasted per day to sup-
port when the (R, S) inventory policy needs to be updated.
Furthermore, we recognize that hospital pharmacy managers
are often responsible for thousands of different medications.
To provide quick solution times and easy implementation,
we create an adaptive inventory system that consists solely
of closed-form expressions. Closed-form expressions pro-
vide quick solution times and easy implementation because
the output (e.g., optimal inventory policy, proportion of drug
shortages per day, proportion of drugs wasted per day) can
be expressed/calculated as a function of input parameters.
Although, hospital pharmacy managers may only be able to
adapt a limited number of (R, S) inventory policies at any
given time. To give these managers a sense of which medi-
cations are of most concern, we use the adaptive inventory
system and provide a procedure to rank medications based
on multiple characteristics of a medication (e.g., expiration
lifetime, shortage concern, waste concern, demand for the
medication).

This research makes the following contributions:

1. We create an adaptive (R, S) periodic review inventory
system that accounts for perishability, supply chain dis-
ruptions, and demand disruptions. All expressions are
presented in closed-form providing quick solution times
and easy implementation which is critical in a hospital
pharmacywheremanagers are often responsible for thou-
sands of different medications.
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2. The adaptive inventory system relies on the expected pro-
portion of drugs wasted per day in a (R, S) periodic
review perishable inventory system with supply chain
disruptions and stochastic demand. To the best of our
knowledge, we are the first to present this value in closed-
form.

3. We use the adaptive inventory system to create a rank-
ing procedure. The ranking procedure provides a way of
discerning which medications are of most concern and
illustrates which policies to update given that a limited
number of inventory policies can be updated.

4. We leverage simulation modeling and perform an exten-
sive numerical analysis using real-world demand data
from the University of Michigan’s Central Pharmacy to
distinguish howamedication’s shortage-wasteweighting
and supply chain disruption profile influence the benefits
(or detriments) of adapting to demand disruptions.

The remainder of the paper is organized as follows:
Section 2 provides literature relevant to this research.
Section 3 presents the adaptive inventory system and the
ranking procedure. Section 4 presents the simulation mod-
els of the multiple inventory systems we consider in this
research. In Section 5, we conduct a numerical analysis using
real-world demand data from the University of Michigan’s
Central Pharmacy. Section 6 closes the paper and provides
future research directions.

2 Literature review

Disruptions in a supply chain, whether from demand, sup-
ply, or transportation, are not a new problem. Paul et al. [8],
Snyder et al. [1], Shen and Li [9], and Ivanov et al. [10] pro-
vide insightful review articles on the topic. To demonstrate
how this research expands upon past research, we organize
the relevant literature into two areas: inventory models with-
out disruptions and inventory models with disruptions. We
close this section by using past literature tomotivate adaptive
inventory policies in a hospital pharmacy setting.

In Table 1, we present (a) inventory models without dis-
ruptions, (b) inventory models with disruptions, and (c) this
research. For each paper, we characterize the research by per-
ishability (NP: non-perishable, P: perishable), demand (D:
deterministic, S: stochastic, DD: demand disruptions), sup-
ply (SSC: stochastic supply capacity, SLT: stochastic lead
time, SCD: supply chain disruptions), adaptive (i.e., inven-
tory policy/control parameters change over time or research
uses thresholds to incorporate dynamic decision-making),
and methodology. We note that if the authors consider a per-
ishable inventory system (e.g., hospital pharmacy), but the

authors do not capture perishability in their model (i.e., the
authors do not capture the finite lifetime of the product), we
label the paper as NP (i.e., non-perishable).

In comparison to the literature, we would like to motivate
adaptive inventory policies and the importance of assess-
ing the performance of the inventory policies for a hospital
pharmacy inventory system. From a hospital pharmacy per-
spective, Ivanov et al. [27] creates a simulationmodel to study
a multi-echelon pharmaceutical supply chain faced with sup-
ply chain disruptions. The findings from [27] suggest that
adaptive inventory policies (i.e., inventory policies change
over time) may help decrease drug shortages and costs for an
inventory system with supply chain disruptions. The author
suggests adaptive inventory policies for future research. It is
worth noting that demand disruptions are not taken into con-
sideration in this earlier research. It is also worth noting that
we incorporate supply chain disruptions when solving for the
optimal inventory policy and we adapt the inventory policy
over time to account for demand disruptions to overcome
drug shortages and drug waste.

From a disruption perspective, Snyder et al. [1] discuss
the need for integrating proactive (i.e., guard against future
uncertainties) and reactive (i.e., implemented when unex-
pected events occur) strategies when overcoming disruptions
[10]. In this paper, we account for supply chain disrup-
tions when solving for the optimal (R∗, S∗) inventory policy
[proactive] as well as endogenously detect demand disrup-
tions and update the (R∗, S∗) inventory policy [reactive] to
tackle the drug shortage and drug waste challenges in a hos-
pital pharmacy inventory system. Furthermore, by detecting
demand disruptions and appropriately updating the (R∗, S∗)
inventory policy, we are able to adapt to changing conditions
and consequently, improve the viability of the inventory sys-
tem [36].

Also, we leverage simulation modeling because it is a
viable method to assess the performance of an inventory
system given different inventory policies, such as adaptive
inventory policies (i.e., inventory policies change over time),
are in place. It is also worth noting that we are analyzing the
performance of an inventory system with many complexities
(e.g., perishable (R, S) inventory policy, supply chain disrup-
tions, real-world demand data, adaptive inventory policies)
and simulation modeling has the flexibility to capture all of
these complexities. When considering the performance of an
inventory system, we consider varying medication shortage-
waste weightings (i.e., concern for shortages versus concern
for waste) and supply chain disruption profiles (i.e., dura-
tion of and time between supply chain disruptions). Gebicki
et al. [37] encourages the use of the criticality of the medi-
cation (i.e., concern for shortages defined by a medication’s
shortage-waste weighting in this research) and availability
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Table 1 Summary of relevant literature

Paper NP/P Demand Supply Adaptive Methodology

(a) Inventory models without disruptions

Zhang et al. [11] NP D Simulation-optimization

Little and Coughlan [12] NP S Constraint program

Neve and Schmidt [13] NP S Cost/service level optimization

Peterson et al. [14] NP S � Heuristics for dynamic program

Kim et al. [15] NP S � Reinforcement learning

Eilon and Elmaleh [16] NP S SLT � Forecasting procedure

Dillon et al [17] P S Stochastic program

Kara and Dogan [18] P S Reinforcement learning

Rajendran and Srinivas [19] P S Stochastic program

Syawal and Alfares [20] P S Simulation-optimization

Xu and Szmerekovsky [21] P S Stochastic program

Li et al. [22] P S � Dynamic program

Li et al. [23] P D SLT Nonlinear program and closed-form

Franco and Alfonso-Lizarazo [24] P S SLT Stochastic program

Nguyen and Chen [25] P S SSC Stochastic program

Nguyen and Chen [26] P S SSC Stochastic program

(b) Inventory models with disruptions

Azghandi [27] NP S SCD Simulation model

Schmitt et al. [28] NP S SCD � Simulation model

Atan and Rousseau [29] P D SCD Closed-form

Czerniak et al. [30] P D SCD Closed-form

Saedi et al. [31] P S SCD Continuous time Markov chain

Czerniak et al. [32] P S SCD Simulation-optimization

He and Wang [33] P DD Analytical model

Rana et al. [34] P DD Analytical model

Uthayakumar and Karuppasamy [35] P DD Economic order quantity model

(c) This research

Czerniak et al. (2024) P DD SCD � Closed-form framework

NP: non-perishable, P: perishable, other abbreviations defined in Section 2

of the medication (i.e., supply chain disruption profile in this
research) in inventory decision-making to improve the out-
comes of a hospital pharmacy. But, they do not study adaptive
inventory policies.

3 Adaptive (R, S) inventory system

We proceed to present the adaptive (R, S) inventory system.
We start by presenting how to solve for a (R, S) inventory
policy for a perishable inventory system with supply chain
disruptions (in Section 3.1) and how to adapt this (R, S)

inventory policy over time to respond to demand disruptions
(in Section 3.2).We close this section by presenting a ranking
procedure (in Section 3.3) which provides a way of discern-
ing which medications are of most concern and illustrates

which inventory policies to update given that a limited num-
ber of inventory policies can be updated.

3.1 (R, S) inventory policies with supply chain
disruptions

We start bymodeling a lost-sales (R, S) perishable inventory
system with supply chain disruptions as done in Czerniak
et al. [30]. Here, R represents the length of the review period
(i.e., attempt to place an order every R days) and S represents
the order-up-to level (i.e., attempt to place an order to raise
the inventory position up to the order-up-to level S every R
days). The closed-form expressions derived in Czerniak et al.
[30] provide quick-to-solve and easy-to-implement (R, S)

periodic review inventory policies. We simply refer to this
model as the (R, S)model. InTable 2,we present the notation
for the (R, S)model. Then, we proceed to present a summary
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Table 2 Summary of the modeling notation for the (R, S) model [30]

Notation Description

Input parameters

k Fixed ordering cost (i.e., for each order attempted; k > 0)

h Holding cost per day per drug (h > 0)

q Deterministic demand per day (q > 0)

e Expiration lifetime in days (e ≥ 1)

γ Maximum proportion of drug shortages per day over the infinite horizon (0 < γ < 1)

α(R) Supply chain disruption probability with respect to the length of the review period R (0 < α(R) < 1)

β(R) Supply chain recovery probability with respect to the length of the review period R (0 < β(R) < 1)

Variables

R Length of the review period (R ≥ 1)

S Order-up-to level (S ≥ 0)

m Number of review periods S fully covers (m = � S
qR �; m ≥ 1)

of the model assumptions. We also describe the structure of
the model and provide support for the assumptions made.

Summary of Modeling Assumptions for the (R, S) Model

• Deterministic expiration lifetime e
• Deterministic and static daily demand q
• Zero lead time
• Orders can only be attempted at times that are integer
multiples of R

• Orders are only successfully placed when the supply
chain is not disrupted

• Always have full and accurate knowledgeof the inventory
on-hand

• Supply chain disruptions modeled as a two-state discrete
time Markov chain

• Medications have no quality decay
• Expiration lifetime e starts when the medication arrives
at the pharmacy

• First-in-first-out protocols in place

Model Structure and Support for the Assumptions Made for
the (R, S) Model

The (R, S) model minimizes the expected ordering and
holding cost, while constraining the proportion of drug short-
ages per day to be at most γ over an infinite horizon. Through
discussions with our hospital pharmacy collaborators, an
ordering cost is necessary to capture thework associatedwith
placing/receiving an order. Furthermore, if an ordering cost
is not included, the model would set the length of the review
period R to R = 1 for every medication in the hospital phar-
macy inventory system (i.e., an order would be attempted for
everymedication every day). In Section 5.3, we describe how
we estimate the ordering cost and holding cost input param-
eters. The constraint on the proportion of drug shortages per

day is tight with the optimal (R∗, S∗) inventory policy (i.e.,
the proportion of drug shortages per day is γ over an infinite
horizon). The model also enforces zero waste in the inven-
tory system by always ensuring S∗ ≤ eq where e is the
deterministic expiration lifetime in days and q is the deter-
ministic daily demand. With this upper bound on S∗, there
may be instances where the maximum proportion of drug
shortages constraint cannot be satisfied. When the maximum
proportion of drug shortages constraint cannot be satisfied,
the optimal inventory policy is always (R∗ = 1, S∗ = eq)

(i.e., the smallest R∗ and the largest S∗) as this maximizes
the expected inventory on-hand.

The (R, S)model assumes that the lead time is zero which
is consistent with hospital pharmacies that tend to see very
small lead times. The Central Pharmacy at the University of
Michigan experiences lead times of 36-72 hours. Also, the
model assumes orders can only be attempted at times that are
integer multiples of R (regardless of the not disrupted versus
disrupted status of the supply chain between review peri-
ods) and that orders are only successfully placed when the
supply chain is not disrupted. This assumption implies that
urgent orders (i.e., orders placed before the reordering period
due to the hospital pharmacy exhausting all inventory) can-
not be placed. However, we note that since the (R, S) model
ensures that S covers at least one review period (i.e., m ≥ 1;
see Table 2), a hospital pharmacy would only exhaust all
inventory before the reordering period if a supply chain dis-
ruption occurred. Given the lead time and integer multiples
of R assumption, we can simply refer to inventory position as
inventory on-hand. When applying the (R, S) model in this
research, we assume that we have full and accurate knowl-
edge of the inventory on-hand. Furthermore, we note that
supply chain disruptions often last weeks, months, or years
[3]which ismuch longer than the typical time between orders
(i.e., R).
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The (R, S) model assumes that supply chain disruptions
follow a two-state supply process which is consistent with
pharmaceutical supply chains [38, 39] (see figure illustrating
the days to recovery after intervention); [40] (supply chain
disruptions when time is modeled as continuous). A two-
state supply process is modeled as a two-state discrete time
Markov chain where the time the supply chain is in the not
disrupted state is a geometric randomvariablewith parameter
α(1) (i.e., disruption probability;mean up timeof 1

α(1) ) and the
time the supply chain is in the disrupted state is a geometric
random variable with parameter β(1) (i.e., recovery probabil-
ity; mean down time of 1

β(1) ) [1]. A two-state supply process
accounts for the duration of and time between supply chain
disruptions. For perishability, the (R, S) model assumes that
the medication has no quality decay [41] and has a determin-
istic lifetime that starts when the medication arrives at the
pharmacy. Through discussions with our hospital pharmacy
collaborators, wemake this assumption because medications
almost always arrive to the hospital pharmacy with at least
two-thirds of their expiration lifetime remaining (e.g., when
e = 90 days, a medication arrives to the pharmacy with an
expiration lifetime of at least 60 days). Assuming that the
remaining lifetime of the medication when it arrives to the
pharmacy is stochastic leads to a more complicated analy-
sis, but this analysis can be considered in future research.
Also, the model assumes first-in-first-out protocols are in
place which is consistent with practice at the University of
Michigan’s Central Pharmacy. For demand, the (R, S)model
assumes that the daily demand, q > 0, is deterministic and
static. For emphasis, our hospital pharmacy setting of interest
does not have deterministic or static demand. In Section 3.2,
we discuss how to use the (R, S)model in the adaptive frame-
work to account for the real-world hospital pharmacy system
that has stochastic and variable demand. We refer the reader
to Appendix A.1 for a summary of the (R, S) model and
implementation details.

3.1.1 Supply chain disruption parameters in the (R, S)
model

In the (R, S)model, α(R) and β(R) represent the supply chain
disruption and recovery probability, respectively, for a review
period of length R days. An important observation is that
these values depend on the length of the review period R
(i.e., a decision variable). Czerniak et al. [30] illustrate how
to use the closed-form expressions to solve for the optimal
(R∗, S∗) with only α(1) and β(1) as input by leveraging P(i)

which is the i-step transition probability matrix (see Eq. 1;
[42]).

P(i) =
( · α(i)

β(i) ·
)

=
(

(1 − α(1)) α(1)

β(1) (1 − β(1))

)i

(1)

In practice, we can find the values of α(1) and β(1) by
answering the following questions:

1. What proportion of the time is the medication short?
Define this value as Q1 (Q1 ∈ (0, 1); 0 implies never
short and 1 implies always short).

2. If the medication goes short, how long do you think
the shortage will last (in days)? Define this value as Q2

(Q2 > 1).

With Q2 >
Q1

1−Q1
(due to the (R, S) model requirement

of α(R) ≤ α(1) < 1; see Table 2) and Q2 > 1 (due to the
(R, S) model requirement of β(R) ≤ β(1) < 1; see Table 2),
we can solve for α(1) and β(1) using the relation that Q1 =

α(1)

α(1)+β(1) and Q2 = 1
β(1) . Here, Q1 corresponds to the long-

run probability that the supply chain is disrupted [43]. Using
these equations, we have the results presented in Eqs. 2-3.

α(1) = Q1

Q2(1 − Q1)
(2)

β(1) = 1

Q2
(3)

Through discussions with our hospital pharmacy collabo-
rators, the value of Q2 is very difficult to quantify in practice,
but it is an important parameter as it defines α(1) and β(1) in
Eqs. 2 and 3, respectively. With this, the expression for the
ratio of the expected proportion of drug shortages per day
given a value Q2 and the true value Q∗

2 is provided in Czer-
niak [44].

3.2 Adapting the (R, S) inventory policy over time

We want to emphasize that in practice, contracts, logis-
tics, and resources can make it challenging to update
the (R, S) inventory policy very frequently (e.g., every
day/week/month). Amore common approach is updating the
inventory policy when a problem arises (e.g., stockout; from
discussions with our hospital pharmacy collaborators), and
an easy approach is updating the inventory policy on fixed
intervals like every 3 or 6 months (i.e., update every B days
where B ∈ {90, 180}) where the average demand from the
past B days is used to update the (R, S) inventory policy. We
refer to this fixed interval approach as a benchmark inven-
tory system. Unlike the benchmark inventory system that
updates the inventory policy on long fixed intervals, we cre-
ate an adaptive inventory system that endogenously detects
when the (R, S) inventory policy needs to be updated at any
point in time. We endogenously detect a change in the inven-
tory policy is needed using a shortage threshold δs and waste
threshold δw. These thresholds represent the change in the
proportion of drug shortages per day and drugs wasted per
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day, respectively, that the inventory system is willing to tol-
erate. Specifically, these thresholds guard against shortages
when an increasing demand disruption and waste when a
decreasing demand disruption occur, respectively. The short-
age threshold δs and waste threshold δw are selected by a
hospital pharmacymanager/administrator and in Section 5.2,
we provide guidance and examples for the selection of these
input parameters. When considering demand, as mentioned
in Section 3.1, the (R, S) model assumes that demand is
deterministic and static. However, our hospital pharmacy
system of interest has stochastic and variable demand. For
the deterministic aspect of the (R, S) model, we replace
the deterministic daily demand (q) with the expected daily
demand (q̄current ) when solving for the (R, S) inventory pol-
icy; the term current implies that this expected daily demand
defines the current (R, S) inventory policy. For the static
aspect of the (R, S) model, we update this (R, S) inventory
policy using a new expected daily demand (q̄new) when we
endogenously detect a demand disruption.

We define the additional notation necessary for the adap-
tive inventory system in Table 3. We also present a depiction
of how the adaptive demand parameters and estimates relate
to one another in Fig. 1. We then proceed to define the
expected proportion of drug shortages and drugs wasted per
day for the (R, S) inventory system. We also explain how to
endogenously detect when the inventory policy needs to be
updated.

3.2.1 Expected proportion of drug shortages and drugs
wasted per day

We proceed to present the closed-form expressions for the
expected proportion of drug shortages per day and drugs
wasted per day for a particular medication of interest. We
use the closed-form expressions for these two proportions
to detect when an inventory policy needs to be updated (see
Section 3.2.2). To provide closed-form expressions for these
two proportions, we assume that the daily demand is nor-
mally distributed.We consider the real-world unique training
daily demand observations for the six 503Bmedications ana-
lyzed in the medication case study (see Section 5.4) when
making this normality assumption. For each medication, the
unique training daily demand observations consist of 56 daily
demand observations when demand is not disrupted (see
Section 5.1 for more details). For each medication, we con-
sider the quantile-quantile plots (i.e., QQ-plots) and the
Shapiro-Wilk test. We note that when applying the Shapiro-
Wilk test (with a significance level 0.05) to the unique
training daily demand observations for each medication, the
real-world daily demand observations do not follow a normal

distribution. However, we do not observe serious devia-
tions from the normality assumption in the QQ-plots. Taking
into account that the Shapiro-Wilk test is sensitive to even
mild deviations from the normal distribution, we make the
assumption that the daily demand is normally distributed. It is
also worth noting that when there are concerns that the daily
demand severely deviates from normality, transformations
such as the Box-Cox transformation can be considered. For
emphasis, we only use the normally distributed daily demand
assumption for the derivation of the closed-form expressions.
We use the real-world observed demand provided by theUni-
versity ofMichigan’s Central Pharmacy throughout the other
portions of the analysis.

Expected Proportion of Drug Shortages Per Day
Using the (R, S) model (see Section 3.1), Eq. 4 repre-

sents the expected proportion of drug shortages per day for
a particular medication of interest when following a (R, S)

inventory policy for an inventory system that has an expected
daily demand of q̄ (in Appendix B.1). Proportion is mea-
sured relative to the expected daily demand q̄ . From Eq. 4,
the expected proportion of drug shortages per day depends
on the length of the review period (R), the order-up-to level
(S), the expected daily demand (q̄), the disruption probability
(α(R)), and the recovery probability (β(R)). It is worth not-
ing that the (R, S) policy is calculated using q̄current which
ensures thatm = � S

q̄current R
� ≥ 1. However, with an expected

daily demand of q̄ , the m ≥ 1 requirement may no longer
be satisfied which explains the two cases presented in Eq. 4.
Furthermore, Czerniak et al. [30] illustrate that stochastic
demand that is normally distributed has a negligible impact
on the expected proportion of drug shortages per daywith the
(R, S) model. The reason for this finding is that the (R, S)

model incorporates supply chain disruptions which encour-
age the inventory system to hold extra inventory on-hand. As
a result, there is a negligible impact on the expected propor-
tion of drug shortages per day when demand is stochastic.
Hence, we simply consider a deterministic expected daily
demand q̄ .

Pshort |(q̄,R,S) = (4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(R)β(R)(1−β(R))m−1

(α(R)+β(R))

(
m + 1 − S

q̄ R

) + (α(R)(1−β(R))m

(α(R)+β(R))

);
when m ≥ 1, m = � S

q̄ R �

β(R)

α(R)+β(R)

( q̄ R−S
q̄ R

) + (
1 − β(R)

α(R)+β(R)

);
when m < 1, m = � S

q̄ R �
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Table 3 Summary of the
modeling notation for the
adaptive inventory system

Notation Description

Thresholds

δs Change in the proportion of drug shortages per day
that signals a change in the (R, S) inventory policy
when exceeded (0 < δs < 1; input parameter)

δw Change in the proportion of drugs wasted per day that
signals a change in the (R, S) inventory policy when
exceeded (0 < δw < 1; input parameter)

Adaptive

N Number of past daily demand observations to con-
sider for the adaptive inventory system daily demand
estimates (input parameter)

qt Daily demand observed on day t (real-world hospital
pharmacy data)

q̄current Expected daily demand used for the current (R, S)

policy

q̄new Expected daily demand calculated using the average
of the most recent N daily demand observations

σnew Standard deviation of daily demand calculated using
the most recent N daily demand observations

Pshort |(q̄,R,S) Expected proportion of drug shortages per day when
following a (R, S) inventory policy for an inventory
system that has an expected daily demand of q̄

Pwaste|(q̄,σ,R,S) Expected proportion of drugs wasted per day when
following a (R, S) inventory policy for an inventory
system that has an expected daily demand of q̄ and
standard deviation of daily demand σ

Benchmark

B Number of days the inventory system follows the same
(R, S) inventory policy where the average of the last
B days is used to update the inventory policy (input
parameter)

Fig. 1 Depiction of the adaptive demand parameters and estimates.
q̄new and σnew are calculated at the end of day i after demand has been
observed. If a demand disruption is endogenously detected at the end of

day i , the new expected daily demand q̄new is used to update the (R, S)

inventory policy since the future demand has not yet been observed
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Pwaste|(q̄,σ,R,S) = (5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ew

S ; � e
R 	 = 1

Ew

(� e
R 	Rq̄+Ew)π0+

∞∑
j=� e

R 	−1

π j (S+Rq̄(
(� e

R 	−1)
2 ))

; � e
R 	 = 2

Ew

(� e
R 	Rq̄+Ew)(π0+

� e
R 	−2∑
j=1

π j− 1
� e
R 	

� e
R 	−2∑
j=1

jπ j )+ S
� e
R 	

� e
R 	−2∑
j=1

jπ j+ Rq̄
� e
R 	

� e
R 	−2∑
j=1

j2π j+
∞∑

j=� e
R 	−1

π j (S+Rq̄(
(� e

R 	−1)
2 ))

; � e
R 	 ≥ 3

where Ew =
(
S · Pr(Z <

S − eq̄√
eσ 2

) − eq̄

− 1

2π

(
− e

− (S−eq̄)2

2eσ2 + e
− (−eq̄)2

2eσ2
)√

eσ 2

)

Expected Proportion of Drugs Wasted Per Day
Equation 5 represents the expected proportion of drugs

wasted per day for a particular medication of interest when
following a (R, S) inventory policy for an inventory system
that has an expected daily demand of q̄ and standard devi-
ation of daily demand σ (in Appendix B.2). Proportion is
measured relative to the expected number of drugs ordered.
To our knowledge, we are the first to present this value in
closed-form. The expected proportion of drugs wasted per
day in Eq. 5 depends on the length of the review period
(R), the order-up-to level (S), the expected daily demand
(q̄), the standard deviation of daily demand (σ ), the disrup-
tion probability (α(R); in π j ), the recovery probability (β(R);
in π j ), and the expiration lifetime (e). Z denotes a stan-
dard normal random variable and Appendix B.2 provides
the closed-form expressions for the summations including
π j . π j is the probability that the supply chain is disrupted

for exactly j consecutive review periods (π0 = β(R)

α(R)+β(R) ;

π j = α(R)β(R)

(α(R)+β(R))(1−β(R))
(1 − β(R)) j , j ≥ 1). Equation 5

accounts for stochastic demand where we assume that the
daily demand is independent and normally distributed with
mean q̄ and standard deviation σ . Past research illustrates
that the expected proportion of drugs wasted with the (R, S)

model is sensitive to stochastic demand that is normally
distributed, especially for medications with short expiration
lifetimes.

3.2.2 Detecting when the inventory policy needs
to be updated

On any day t , we follow a particular (R, S) inventory policy
which is defined with respect to an expected daily demand

of q̄current . In the presence of increasing and/or decreasing
demand disruptions, we may need to update the inventory

policy to avoid excessive drug shortages and/or drug waste.
The key idea is that we consider how a shift in the expected
daily demand impacts the expected proportion of drug short-
ages per day and expected proportion of drugs wasted per
day. For the shift in the expected daily demand, we estimate
the new expected daily demand q̄new by averaging the most
recent N daily demand observations and we compare this
to q̄current ; the expected daily demand used to define the
current (R, S) inventory policy. We detect a change in the
inventory policy is necessary if (a) q̄new ≥ q̄current and the
shift in the expected daily demand causes the change in the
expected proportion of drug shortages per day to exceed δs
or (b) q̄new < q̄current and the shift in the expected daily
demand causes the change in the expected proportion of
drugs wasted per day to exceed δw. If (a) or (b) holds, we
update the (R, S) inventory policy using the new expected
daily demand q̄new. It is worth noting that if q̄new < q̄current ,
the estimated standard deviation of demand (i.e., σnew) will
influence the expected proportion of drugs wasted per day as
illustrated inEq. 5.We illustrate an overviewof the procedure
in Fig. 2.

We proceed to describe the daily demand estimates and
expected proportions needed for the adaptive inventory sys-
tem.We then formally define the conditions that detect when
the inventory policy needs to be updated.

Daily Demand Estimates and Expected Proportions
We estimate the expected daily demand q̄new by averag-

ing themost recentN daily demand observations.We initially
considered other prediction approaches (e.g., ARIMA), but
we found that a simple average approach performed just
as well or better when considering the expected propor-
tion of drug shortages per day and expected proportion
of drugs wasted per day. We hypothesize that an averag-
ing approach performs well due to the variable and noisy
real-world daily demand data. We also found that know-
ing everything about the future (i.e., knowing the future N
daily demand observations exactly) had a small or negligible
impact on the performance. For medications with seasonal
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Fig. 2 Overview of the adaptive
inventory system

data over a periodof daily demandobservations (e.g., demand
is dependent on the day of the week), we suggest select-
ing N such that it is a multiple of the seasonal period (e.g.,
N ∈ {7, 14, 21, 28, 35, 42, 49, 56} days for weekly season-
ality). For medications that experience longer periods of
seasonality (e.g., yearly), we note that the adaptive inven-
tory system will endogenously detect changes in the demand
over this longer period of time and appropriately update the
(R, S) inventory policy. For the standard deviation of daily
demand, we estimate the standard deviation of daily demand
(i.e., σnew) using the most recent N daily demand observa-
tions.

We first calculate the expected proportion of drug short-
ages per day when following a particular (R, S) inventory
policy. We calculate this proportion for an inventory sys-
tem that has an expected daily demand of q̄new (i.e.,
Pshort |(q̄new,R,S), see Eq. 4) which corresponds to the propor-
tion estimate with the new demand mean. We also calculate
this proportion for an inventory system that has an expected
daily demand of q̄current (i.e., Pshort |(q̄current ,R,S), see Eq.
4) which corresponds to the proportion estimate with the
demandmean that defines the current (R, S) inventory policy.
Next, we calculate the expected proportion of drugs wasted
per day when following a particular (R, S) inventory policy.
We calculate this proportion for an inventory system that has
an expected daily demand of q̄new and standard deviation
of daily demand σnew (i.e., Pwaste|(q̄new,σnew,R,S), see Eq. 5)
which corresponds to the proportion estimate with the new
demand mean and new standard deviation of daily demand.
We also calculate this proportion for an inventory system that
has an expected daily demand of q̄current and standard devi-
ation of daily demand σnew (i.e., Pwaste|(q̄current ,σnew,R,S), see
Eq. 5) which corresponds to the proportion estimate with the
demandmean that defines the current (R, S) inventory policy
and new standard deviation of daily demand.

Conditions that Detect When the Inventory Policy Needs to
Be Updated

Given q̄new ≥ q̄current , we have an increase or no change
in the expected daily demand. In this case, we compare
Pshort |(q̄new,R,S) − Pshort |(q̄current ,R,S) to the shortage thresh-
old δs ; the change in the proportion of drug shortages per
day that signals a change in the (R, S) inventory policy
when exceeded. δs provides a numerical value to quantify the
shortage concern. A smaller δs is recommended for medica-
tions that have a high shortage concern. We note that when
q̄new = q̄current , Pshort |(q̄new,R,S) − Pshort |(q̄current ,R,S) will
equal zero, but we include this scenario to simply break the
analysis into two cases.

Given q̄new < q̄current , we have a decrease in the expected
daily demand. In this case, we compare Pwaste|(q̄new,σnew,R,S)

−Pwaste|(q̄current ,σnew,R,S) to the waste threshold δw; the
change in the proportion of drugs wasted per day that sig-
nals a change in the (R, S) inventory policy when exceeded.
δw provides a numerical value to quantify the waste concern.
A smaller δw is recommended for medications that have a
high waste concern.

Formally, the adaptive inventory system detects that the
inventory policy needs to be updated if either condition in
Eq. 6 is satisfied. We provide a detailed discussion on the
selection of the input parameters δs and δw in Section 5.2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pshort |(q̄new,R,S)

−Pshort |(q̄current ,R,S) > δs;
when q̄new ≥ q̄current

Pwaste|(q̄new,σnew,R,S)

−Pwaste|(q̄current ,σnew,R,S) > δw;
when q̄new < q̄current

(6)
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Given we detect that the (R, S) inventory policy needs to
be updated, we set q̄current = q̄new and solve for the new
(R, S) inventory policy using the (R, S) model.

3.3 Rankingmedications

Managers at the University of Michigan’s Central Pharmacy
are responsible for making inventory decisions for 2,500+
medications. We create a ranking procedure to address the
following questions:

1. Out of the 2,500+ medications, which (if any) medica-
tions should the hospital pharmacy be most concerned
about?

2. If only a limited number of inventory policies can be
updated, which medications (if any) should the hospital
pharmacy focus on?

We present a ranking procedure that depends on the:

(a) fixed ordering cost for the medication (k)
(b) storage/holding cost for the medication (h)
(c) expiration lifetime of the medication (e)
(d) supply chain disruption profile of the medication (α(R)

and β(R))
(e) shortage concern (δs ; change in the proportion of drug

shortages per day that the decision-maker is willing to
tolerate for the medication)

(f) waste concern (δw; change in the proportion of drugs
wasted per day that the decision-maker is willing to tol-
erate for the medication)

(g) demand for the medication (q̄current and q̄new)
(h) demand variability of the medication (σnew)

For the ranking procedure, we observe that the adaptive
inventory system keeps a record of the change in the expected
proportion of drug shortages per day and the change in the
expected proportion of drugs wasted per day for a partic-
ular medication (see Eq. 6). We are interested in ranking
the medications in order of decreasing concern. We intro-
duce a proportion exceedance metric denoted Pmetric which
measures how much the shortage threshold δs is exceeded
given q̄new ≥ q̄current and waste threshold δw is exceeded
given q̄new < q̄current . We define Pmetric in Eq. 7 where it is

important to note that the adaptive inventory system only
indicates that the (R, S) inventory policy needs to be updated
when Pmetric > 0..

Pmetric = (7)

{
max{0, Pshort |(q̄new,R,S) − Pshort |(q̄current ,R,S) − δs}; when q̄new ≥ q̄current
max{0, Pwaste|(q̄new,σnew,R,S) − Pwaste|(q̄current ,σnew,R,S) − δw}; when q̄new < q̄current

Pmetric encompasses characteristics (a)-(g). We rank the
medications in order of decreasing concern by sorting the
medications from largest to smallest using Pmetric. There are
multiple ways that decision-makers can implement the rank-
ing procedure in practice (e.g., update medications based on
Pmetric every day, update medications based on the average
value of Pmetric over a fixed interval of days). In Section 5.5,
we illustrate one way of implementing the ranking procedure
in practice and we analyze the results.

4 Simulationmodels

With the varying drug shortage-waste weightings and sup-
ply chain disruption profiles, we use simulation modeling
to assess the performance of multiple inventory systems.
We create simulation models of four inventory systems:
(A) Adaptive Inventory System (in Section 4.1), (B) Adap-
tive with Buyback Inventory System (in Section 4.2), (C)
Benchmark Inventory System (in Section 4.3), and (D) Static
Inventory System (in Section 4.3). We let t denote the day in
the planning horizonwhere the decision-maker can select the
initialization of t. We let r denote the number of days remain-
ing in the review period until the next order is attempted, b
denote the number of days since the (R, S) inventory pol-
icy has been updated, Ii denote the inventory on-hand with
a lifetime remaining of i days (i = 1, ..., e), and Itot denote
the total inventory on-hand. To assess the performance of the
system, we record the number short each day t (i.e., shortt ),
the number wasted each day t (i.e.,wastet ), the number held
each day t (i.e., ht ), and the number successfully ordered each
day t (i.e., ot ).

4.1 (A) Adaptive inventory system

Ignoring the bold text, Fig. 3 provides a step-by-step descrip-
tion of the simulation model representing a periodic review
inventory system with adaptive inventory policies. To ini-
tialize the model, we (a) define q̄current using the first B
daily demand observations and solve for the optimal (R∗, S∗)
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Fig. 3 Simulation model road map for the (A) Adaptive, (B) Adaptive
with Buyback, and (C) Benchmark inventory systems. For (A), follow
steps (a)-(n) and omit the bold text. For (B), follow steps (a)-(n) and

implement the bold text to incorporate buyback. For (C), starting at step
(g), replace the process with the dashed shapes/lines

inventory policy. We then (b) initialize r = R∗ (i.e., there are
R∗ days remaining in the review period until an order should
be attempted), b = 0 (i.e., it has been 0 days since the inven-
tory policy has been updated), Ii = 0 ∀i = 1, ..., e (i.e.,
the inventory system has zero inventory on-hand across all
lifetimes), Itot = 0 (i.e., the total inventory on-hand is zero),
and ot−1 = S∗ (i.e., S∗ drugs will arrive on day t).

After initializing the model, an iterative procedure begins.
At the beginning of day t, (c) an order placed on day t − 1
arrives at the hospital pharmacy (when supply is not dis-
rupted) recalling the (R, S)model zero lead time assumption.
The inventory levels are appropriately updated. Then, we (d)
observe the real-world daily demand (i.e., qt ). At the end of
day t, we (e) record the number of drug shortages on day t
(i.e., shortt ), record the number of drugs wasted on day t
(i.e., wastet ), and discard these wasted drugs. Then, we (f)
subtract one day from the number of days remaining in the
review period (i.e., r = r − 1), add one day to the num-
ber of days since the inventory policy has been updated (i.e.,
b = b + 1), and appropriately update the inventory levels.
Then, (g) if r = 0 (i.e., there are zero days remaining in the
review period), an order should be attempted. Thus, we pro-
ceed to step (h). Otherwise, no order attempt is necessary so
we (n) record the number of drugs held (i.e., ht = Itot ) and
ordered (i.e., ot = 0) on day t, and start the process back at
step (d).

Given an order should be attempted, we (h) use the
most recent N daily demand observations to estimate the
expected daily demand q̄new and standard deviation of
daily demand σnew. Then, we (i) determine if the (R, S)

inventory policy needs to be updated by seeing if either
condition in Eq. 6 is satisfied (i.e., q̄new ≥ q̄current &
Pshort |(q̄new,R∗,S∗) −Pshort |(q̄current ,R∗,S∗) > δs or q̄new <

q̄current & Pwaste|(q̄new,σnew,R∗,S∗)− Pwaste|(q̄current ,σnew,R∗,S∗)
> δw). If the (R, S) inventory policy needs to be updated,
we (j) update the inventory policy by setting q̄current = q̄new
and solve for the corresponding optimal (R∗, S∗) inventory
policy. After step (j), we (k) set b = 0 to indicate that it has
been zero days since the inventory policy has been updated.
Finally, we (l) attempt to place an order based on the (R∗, S∗)
inventory policy and set r = R∗. When supply is not dis-
rupted, the order is successful. We (m) record the number of
drugs held (i.e., ht = Itot ) and ordered (i.e., ot = S∗ − Itot )
on day t, and start the process back at step (c).When supply is
disrupted, the order is unsuccessful. We (n) record the num-
ber of drugs held (i.e., ht = Itot ) and ordered (i.e., ot = 0)
on day t, and start the process back at step (d).

4.2 (B) Adaptive inventory systemwith buyback

Through discussions with our hospital pharmacy collabora-
tors at the University of Michigan’s Central Pharmacy, some
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contracts allow the pharmacy to return drugs if the hospi-
tal pharmacy has too much inventory on-hand. With these
buyback programs in mind, we create a simulation model
of a periodic review inventory system with adaptive inven-
tory policies where the hospital pharmacy can return drugs
to the supplier given the inventory on-hand exceeds the opti-
mal order-up-to level S∗. Taking notice to the bold text, Fig. 3
presents the step-by-step description of the simulationmodel.
We add an extra operation (see bold text) in step (k) where we
allow the hospital pharmacy to return all drugs that cause the
inventory on-hand to exceed the optimal order-up-to level S∗.
We assume that the newest inventory (i.e., longest remaining
lifetime) is returned and that the hospital pharmacy receives
full compensation for the returned drugs.

4.3 (C) Benchmark inventory system and (D) static
inventory system

The simulation model for the benchmark inventory system
and static inventory system is the same as the adaptive inven-
tory system (i.e., (A) Adaptive) except the (R, S) inventory
policy is only updated when b = B (see dashed shapes/lines
in Fig. 3) and the (R, S) inventory policy is never updated,
respectively.

5 Numerical analysis

We use daily demand data from the University of Michigan’s
Central Pharmacy (October 2019-November 2021). This two
year period captures demand before the Covid-19 pandemic
and fluctuations in demand during the Covid-19 pandemic.
We analyze how a medication’s shortage-waste weighting
and supply chain disruption profile influence the benefits (or
detriments) of adapting to demand disruptions. We present
the data (in Section 5.1), shortage-waste weightings (in
Section 5.2), and input parameters (in Section 5.3). We pro-
ceed to study the benefits (or detriments) of adapting to
demand disruptions in Section 5.4. Then, we analyze the
ranking procedure (see Section 3.3) in Section 5.5. Through-
out the numerical analysis, we denote days t ≤ 0 as the
training horizon and days t > 0 as the testing horizon. Also,
the (R, S) model treats R and S as continuous decision vari-
ables. We take a conservative approach by rounding R down
to the nearest whole number and S up to the nearest whole
number. For all other computations that require an integer
value, we round to the nearest whole number (e.g., q̄current ).
We also ensure that all daily demand values are positive as the
(R, S)model requires a positive daily demand (q̄current > 0)
and demand is always non-negative in practice.

5.1 Real-world data

The Central Pharmacy at the University of Michigan man-
ages and keeps records for 2,500+medications (e.g., surgical,
cancer, daily care for inpatients). Except when analyzing the
ranking procedure (in Section 5.5), we focus on 503B med-
ications which are pre-compounded medications that arrive
to the pharmacy in ready-to-use presentations ([45]; see Sta-
bility in the Supply Chain at https://www.fagronsterile.com/
newsroom/what-is-a-503b-compounding-pharmacy). If a 5
03B medication experiences a shortage, hospital pharma-
cies will often substitute the medication with the form that
requires compounding before administration. This form of
the medication requires additional pharmacy resources and
has a very small expiration lifetime once compounded (e.g.,
24 hours). If a 503B medication is wasted due to expiration,
hospital pharmacies experience a higher waste cost because a
503B medication is often more expensive than the form that
requires compounding before administration. There is also
an increased chance of drug waste with 503B medications
because 503B medications have fairly short expiration life-
times (e.g., 90 days) in comparison to non-503Bmedications
(e.g., ≥ 360 days; for medications that require compound-
ing, referring to the expiration lifetime of the product before
it is compounded). These are additional reasons why it is
critical to avoid drug shortages and drug waste for this class
of medications.

We start by analyzing two 503B medications. The first
medication is (a) Rocuronium 10 mg/1mL (Rocuronium)
which is a paralyzing agent that is critical to have on-hand
and ismost often used for rapid sequence intubation. The sec-
ond medication is (b) Labetalol 5mg/1mL (Labetalol) which
is a critical medication used for blood pressure reduction
for several indications. Figure 4 presents the weekly demand
where the red horizontal lines denote the correspondingmean
weekly demand that minimizes the sum of squared errors for
the daily demand data. It is worth noting that the red hori-
zontal lines for Rocuronium resemble an increasing demand
disruption and the red horizontal lines for Labetalol resem-
ble a decreasing demand disruption. Furthermore, for both
Rocuronium and Labetalol, the two groups of daily demand
observations corresponding to the red horizontal lines are sta-
tistically different at a 0.05 significance level when applying
a non-parametric Mann Whitney U test to the two groups.
Through discussions with our hospital pharmacy collabora-
tors, the demand disruptions for Rocuronium and Labetalol
are a result of changes in the patient population during the
Covid-19 pandemic (e.g., cancellation of elective surgeries).
The training horizon (i.e., t ≤ 0) consists of the first 56
unique daily demand observations (8 weeks) stacked four
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Fig. 4 Weekly demand versus day in the planning horizon. Numerical values are removed on the y-axis for data confidentiality

times (i.e., demand observation 1, 2,..., 56, 1, 2,..., 56, 1, 2,...,
56, 1, 2,..., 56) to have 224 observations. Then, we only select
observations 45 − 224 to obtain 180 daily demand training
observations (i.e., about 6 months). We replicate and stack
these daily demand observationswhen constructing the train-
ing data set to have a training data set that is not impacted by
the Covid-19 pandemic. Beyond Rocuronium and Labetalol,
we consider four additional 503B medications at the end of
Section 5.4.

5.2 Shortage-waste weighting

A medication’s shortage-waste weighting defines the short-
age concern (defined by δs) and waste concern (defined by
δw) for a particularmedication of interest. This input parame-
ter is selected by a hospital pharmacymanager/administrator.
Working closely with our hospital pharmacy collaborators,
we study a range of (δs, δw) values such that δs + δw = 0.1
where δs ∈ [0.01, 0.09] and δw ∈ [0.01, 0.09] to capture
the trade-off between these two measures. In the following
section, we select γ = 0.05. This implies that the (R, S)

model ensures that shortages occur 5% of the time given
the shortage constraint can be satisfied in the (R, S) model
(see Section 3.1). Therefore, our range of δs ∈ [0.01, 0.09]
values detects when shortages occur more than 6% − 14%
of the time, respectively. It is important to note that a shift
from 5% of the time to 6% of the time is a 20% increase
in shortages. Also, the adaptive inventory system consid-
ers the percentage of drugs wasted with the mean demand
used to define the current (R∗, S∗) inventory policy (i.e.,
100∗ Pwaste|(q̄current ,σnew,R∗,S∗)%) and the newmean demand
(i.e., 100 ∗ Pwaste|(q̄new,σnew,R∗,S∗)%) given a standard devi-
ation of daily demand σnew. Therefore, our range of δw ∈
[0.01, 0.09] values detects when the difference in the per-
centage of drugs wasted is more than 1%−9%, respectively.
Figure 5 illustrates a medication’s shortage-waste weighting
where we also provide medication examples in black ital-

ics. We note that when (δs, δw) = (0.05, 0.05), the model is
equally sensitive to changes in drug shortages anddrugwaste.
We also note that for medications with a very high short-
age concern, a hospital pharmacymanager/administrator can
select a shortage-waste weighting with a high shortage con-
cern and low waste concern (e.g., (δs, δw) = (0.01, 0.09))
and couple this with a small proportion of demand not satis-
fied for the (R, S) model (e.g., γ = 0.01).

5.3 Model input parameters

Weprovide a summary of the input parameters for the numer-
ical analysis in Table 4. For the (R, S) model, through
discussions with our hospital pharmacy collaborators, we
estimate the ordering cost (k) using 10 times the cost
of the medication (i.e., k = 10·(medication price)). We
consider a daily holding cost (h) relative to medication
price of 0.001 (i.e., h = 0.001·(medication price); [46]).
Through discussions with our hospital pharmacy collabo-
rators, Rocuronium and Labetalol have a wholesale price
of about $12 and $7 per dose, respectively. Furthermore,
by discussing with our hospital pharmacy collaborators, we
consider an expiration lifetime of 90 days (i.e., e = 90)
which is consistentwith the class of 503Bmedications.When
solving for the optimal (R∗, S∗) policy, we constrain short-
ages to occur only 5% of the time (i.e., γ = 0.05). Also,
when modeling supply chain disruptions as a two-state dis-
crete time Markov chain (see Section 3.1), we consider four
supply chain disruption profiles, (α(1), β(1)) = {( 1

30 ,
1
10 ),

( 1
90 ,

1
30 ), (

1
270 ,

1
90 ), (

1
810 ,

1
270 )}, where 1

x corresponds to an
expected duration of x days. Our hospital pharmacy col-
laborators at the University of Michigan have observed a
variety of supply chain disruption lengths in practice (e.g.,
1-3 months and 8-9 months). These (α(1), β(1)) supply chain
disruption profiles all have the same long-run probability that

the supply chain is disrupted: α(1)

α(1)+β(1) = 0.25. Demand for
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Fig. 5 A medication’s
shortage-waste weighting. From
left to right, the concern for
shortages increases (i.e., δs
decreases) and the concern for
waste decreases (i.e., δw

increases)

a medication often depends on the day of the week, so we
consider N = 56 past daily demand observations when esti-
mating the expected daily demand and standard deviation of
daily demand for the adaptive inventory system (i.e., 56 is
divisible by 7). We provide additional details and sugges-
tions for the selection of N in Section 5.6. We consider a
benchmark inventory system that follows the same inventory
policy for B = 90 days (i.e., about 3 months).

For all simulation models, we initialize q̄current using the
first B = 90 training daily demand observations as shown
in Section 4. However, to warm-up the simulation model,
we replicate and stack the entire set of 180 training daily
demand observations 4 times to have a total warm-up period
of 4(180) days (i.e., ≈ 2 years). Following the warm-up
period, we always consider a testing horizon of 720 days (i.e.,
≈ 2 years). We first note that we consider a long warm-up

period to ensure that the inventory on-hand is appropriately
balanced across the potential lifetimes of the medication
(i.e., not all of the inventory on-hand is “new”). Also, a
sufficient warm-up period coupled with 1,000 simulation
replications makes it likely that all possible supply chain dis-
ruption patterns are well represented. We specifically select
1,000 simulation replications as this ensures a 95% confi-
dence interval half-width of at most 0.01 for the proportion
of drug shortages per day for Rocuronium and Labetalol with
the (A) Adaptive model when (δs, δw) = (0.05, 0.05) and
(α(1), β(1)) = ( 1

270 ,
1
90 ).

For the adaptive models (i.e., (A) Adaptive and (B) Adap-
tive with Buyback), we use the most recent N = 56 daily
demand observations to endogenously detect demand dis-
ruptions and update the (R, S) inventory policy. It is worth
noting that we initialize all the simulation models using the

Table 4 Numerical analysis
input parameters

Notation Description

Input parameters

k = 10·(medication price) Fixed ordering cost (i.e., for each order attempted)

h = 0.001·(medication price) Holding cost per day per drug

e = 90 Expiration lifetime in days

γ = 0.05 Maximum proportion of drug shortages per day over
the infinite horizon

α(1) ∈ { 1
30 , 1

90 , 1
270 , 1

810 } Supply chain disruption probability with respect to 1
day

β(1) ∈ { 1
10 , 1

30 , 1
90 , 1

270 } Supply chain recovery probability with respect to 1
day

δs ∈ [0.01, 0.09] Change in the proportion of drug shortages per day
that signals a change in the (R, S) inventory policy
when exceeded

δw ∈ [0.01, 0.09] Change in the proportion of drugs wasted per day that
signals a change in the (R, S) inventory policy when
exceeded

N = 56 Number of past daily demand observations to con-
sider for the adaptive inventory system daily demand
estimates

B = 90 Number of days the inventory system follows the same
(R, S) inventory policy where the average of the last
B days is used to update the inventory policy

Warm-up= 4(180) Length of the warm-up period in days for the simula-
tion models

Reps= 1, 000 Number of simulation replications
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first B = 90 training daily demand observations which keeps
consistency across all four inventory systems of interest:
(A) Adaptive, (B) Adaptive with Buyback, (C) Benchmark,
and (D) Static. Furthermore, we implement a long warm-up
period that uses the first 180 training daily demand obser-
vations stacked 4 times for the simulation models (i.e., ≈ 2
years). But, the sole purpose of consistent initialization and
long warm-up periods is to compare the performance of the
systems without bias. When implementing these inventory
systems in practice, the (A) Adaptive and (B) Adaptive with
Buyback inventory systems only require N daily demand
observations for initialization. The (C) Benchmark inventory
system only requires B daily demand observations for initial-
ization. The (D) Static inventory system only requires N or
B daily demand observations (based on the decision-maker)
for initialization.

5.4 Medication case studies

We proceed to present the results for the medication case
studies. Specifically, we provide the results for (a) Rocuro-
niumand (b)Labetalol.At the end of this section,we consider
four additional 503B medications and summarize the results
in a table. For all analyses, we use the real-world demand
data provided by the Central Pharmacy at the University of
Michigan and we simulate the performance of the (A) Adap-
tive, (B) Adaptive with Buyback, (C) Benchmark, and (D)
Static models. For clarity, from a shortage perspective, we
claim that adaptive inventory policies are beneficial if the
adaptive model (e.g., (A) Adaptive and (B) Adaptive with
Buyback) leads to a smaller proportion of drug shortages per
day in comparison to the (D) Static model. We claim that
adaptive inventory policies are detrimental if the adaptive
model has a larger proportion of drug shortages per day in
comparison to the (D) Static model. From a waste perspec-
tive, we claim that adaptive inventory policies are beneficial
if the adaptive model (e.g., (A) Adaptive and (B) Adaptive
with Buyback) leads to a smaller proportion of drugs wasted
per day in comparison to the (D) Static model. We claim
that adaptive inventory policies are detrimental if the adap-
tive model has a larger proportion of drugs wasted per day in
comparison to the (D) Static model. We also provide addi-
tional insights using the (C) Benchmark model.

5.4.1 Rocuronium and labetalol case studies

We present the results for Rocuronium (see Fig. 6) and
Labetalol (see Fig. 7). We present the overall expected pro-
portion of drug shortages per day and proportion of drugs
wasted per day over the testing horizon. The testing horizon
is 720 days (i.e., ≈ 2 years). We also present the expected
number of inventory policy changes made over the course of
the testing horizon. For the shortage-waste weightings (see

x-axis in Figs. 6 and 7), we consider δw ∈ [0.01, 0.09] such
that δs + δw = 0.1. For the supply chain disruption pro-
file, we focus on supply chain disruptions with an expected
duration of 90 days: (α(1), β(1)) = ( 1

270 ,
1
90 ). Also, for the

supply chain disruption profile, we provide the disruption
probability with respect to 1 day (i.e., α(1)), recovery proba-
bility with respect to 1 day (i.e., β(1)), and optimal (R∗, S∗)
inventory policy when the mean of the first B = 90 training
daily demand observations (i.e., initial q̄current ) are used for
the expected daily demand q̄current (see Fig. 3 step (a)).

FromFigs. 6 and 7, we find that (a) for a fixed supply chain
disruption profile, a medication’s shortage-waste weighting
dictates themagnitude of the benefits (or detriments) of adap-
tive inventory policies. For example, consider the proportion
of drugs wasted per day for Rocuronium (see Fig. 6 col-
umn 2). When the model is more concerned with shortages
implying δw is large since δw + δs = 0.1 (see x-axis), the
detriments of an adaptive model (i.e., (A) Adaptive and (B)
Adaptive with Buyback) in comparison to the static model
(i.e., (D) Static) are greater than a model that is more con-
cerned with waste implying δw is small. We note that the
(D) Static model always performs well in terms of the pro-
portion of drugs wasted.Wemost likely observe this because
Rocuronium resembles an increasing demand disruption (see
Fig. 4(a)). The (D) Static model never changes the inventory
policy when the increase in demand occurs implying the (D)
Static model is always under-ordering. As a result, the (D)
Static model performs well from a waste perspective (see
Fig. 6 column 2), but not a shortage perspective (see Fig. 6
column 1). Consider the proportion of drugs wasted per day
for Labetalol (see Fig. 7 column 2). When the model is more
concerned with shortages implying δw is large (see x-axis),
the benefits of an adaptive model (i.e., (A) Adaptive and (B)
Adaptive with Buyback) in comparison to the static model
(i.e., (D) Static) are slightly less than a model that is more
concerned with waste implying δw is small. We note that
the (D) Static model always performs well in terms of the
proportion of drugs shortages. We most likely observe this
because Labetalol resembles a decreasing demand disrup-
tion (see Fig. 4(b)). The (D) Static model never changes the
inventory policy when the decrease in demand occurs imply-
ing the (D) Static model is always over-ordering. As a result,
the (D) Static model performs well from a shortage perspec-
tive (see Fig. 7 column 1), but not a waste perspective (see
Fig. 7 column 2).

Selecting a shortage-waste weightingwith a high shortage
[waste] concern often performs better than a shortage-waste
weighting with a low shortage [waste] concern with respect
to the proportion of drug shortages [drugs wasted] per day.
However, it is worth noting that we do not always observe
a monotone property for the proportion of drug shortages
per day and the proportion of drugs wasted per day as
we vary (δs, δw). For example, consider the proportion of
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Fig. 6 Rocuronium results withmodels (A)-(D).We consider long sup-
ply chain disruption durations where α(1) = 1

270 and β(1) = 1
90 . We

have that (R∗, S∗) = (1, 8910)with an initial q̄current = 98. The x-axis
illustrates δw such that δw +δs = 0.1 implying δw increases from left to

right and δs decreases from left to right. Recall that δw and δs represent
the change in the proportion of drugs wasted per day and drug shortages
per day that the inventory system is willing to tolerate. See Fig. 4(a) for
the observed demand over the planning horizon

drugs wasted per day for Rocuronium (see Fig. 6 column
2). There are instances where a shortage-waste weighting
that is less concerned with waste (e.g., δw = 0.05) has a
smaller proportion of drugs wasted per day in comparison
to a shortage-waste weighting that is more concerned with
waste (e.g., δw = 0.04). Taking a deeper look, we also find

that the 95% confidence intervals around the point estimates
for the proportion of drugs wasted per day for δw = 0.04
and δw = 0.05 do not intersect. However, it is important to
note that the difference in the expected proportion of drugs
wasted per day with δw = 0.04 and δw = 0.05 is very small
(i.e., difference of 0.019). Furthermore, if we consider all

Fig. 7 Labetalol results with models (A)-(D). We consider long supply
chain disruption durations where α(1) = 1

270 and β(1) = 1
90 . We have

that (R∗, S∗) = (1, 3780) with an initial q̄current = 43. The x-axis
illustrates δw such that δw + δs = 0.1 implying δw increases from left

to right and δs decreases from left to right. Recall that δw and δs rep-
resent the change in the proportion of drugs wasted per day and drug
shortages per day that the inventory system is willing to tolerate. See
Fig. 4(b) for the observed demand over the planning horizon
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non-monotone instances across the six 503B medications of
interest in this research, we continue to find a very small
difference in the expected proportion of drug shortages per
day or drugs wasted per day (i.e., difference ≤ 0.03). From
a practical perspective, these very small differences may not
be significant.We suspect that these non-monotone instances
are a combination of (1) simulation sampling error and (2)
the medication shortage concern (i.e., δs) and medication
waste concern (i.e., δw) causing small differences on when
an inventory policy is updated and the frequency of an inven-
tory policy being updated.

When looking at the number of policy changes, we find
that (b) the number of policy changes with the (A) Adaptive
and (B) Adaptive with Buyback models is largely influenced
by the medication shortage concern (i.e., δs) and medica-
tion waste concern (i.e., δw). Consider the number of policy
changes for Rocuronium (see Fig. 6 column 3). As the model
becomes more concerned with shortages (i.e., δw increases),
the number of policy changes generally increase. Consider
the number of policy changes for Labetalol (see Fig. 7 col-
umn 3). The number of policy changes is fairly stable for the
multiple (δs, δw) shortage-waste weightings. But, the num-
ber of policy changes starts to increase as the model becomes
more concerned with shortages.

We next take a deeper look at the (C) Benchmark model
which updates the inventory policy every B = 90 days using
the average daily demand from the most recent B = 90 days.
In the upcoming Section 5.6, we emphasize that (c) the (C)
Benchmark model can lead to very poor performance. If we
consider Figs. 6 and 7, we can start to see this finding. The
proportion of drug shortages per day with the (A) Adaptive,
(B) Adaptive with Buyback, and (C) Benchmark models are
very similar. But, the proportion of drugswasted per daywith
the (C) Benchmark model is much greater than the propor-
tion of drugs wasted per day with the (A) Adaptive and (B)
Adaptive with Buybackmodels for almost all shortage-waste
weightings.

We also find that (d) when considering the proportion
of drugs wasted per day particularly for a medication that
resembles a decreasing demand disruption (e.g., Labetalol;
see Fig. 4(b)), the (B) Adaptive with Buyback model outper-
forms the (A) Adaptive model (see Fig. 7 column 2). Recall
that the (B)AdaptivewithBuybackmodel allows the hospital
pharmacy to return drugswhen the order-up-to level S∗ is less
than the inventory on-hand. The improvement in the propor-
tion of drugswasted per daywith zero to negligible impact on
the proportion of drug shortages per day encourages the use
of such buyback programs. Furthermore, when considering a
medication that resembles a decreasing demand disruption,
an inventory policy that stocks a lot of inventory on-hand
(i.e., a large order-up-to level S; e.g., a medication with a
long expected duration of supply disruptions) may see great

benefits from a buyback program in terms of the expected
proportion of drugs wasted.

5.4.2 Other medications of interest and statistical
significance

In addition to Rocuronium and Labetalol, we summarize the
results (see Table 5) for four other 503Bmedications of inter-
est: Avastin 1.25mg/0.05mL (chemotherapy with several
indications;wholesale price of about $55 per dose), Oxytocin
30 units/500mL (induction of labor; wholesale price of about
$10 per dose), Cefazolin 2gm/100mL (antibiotic; wholesale
price of about $14 per dose), Norepinephrine 16mg/250mL
(vasopressor used to increase blood pressure;wholesale price
of about $25 per dose). The wholesale prices were obtained
through discussions with our hospital pharmacy collabora-
tors. The weekly demand data are provided in Appendix C.1.
Like Rocuronium and Labetalol (see Section 5.1), through
discussions with our hospital pharmacy collaborators, the
demand disruptions for Avastin, Oxytocin, Cefazolin, and
Norepinephrine are a result of changes in the patient popula-
tion during theCovid-19 pandemic. In Table 5,we present the
ratio of the proportion of drug shortages per day with the (D)
Static model to the proportion of drug shortages per day with
the (A) Adaptive model for varying shortage-waste weight-
ings and supply chain disruption profiles.Wepresent the ratio
to the hundredths place. A ratio that is greater than 1 implies
that the (A) Adaptive model is beneficial (i.e., decreases the
proportion of drug shortages per day) and a ratio that is less
than 1 implies that the (A) Adaptive model is detrimental
(i.e., increases the proportion of drug shortages per day). We
do the same for the proportion of drugs wasted per day. Num-
bers with asterisks indicate that the proportion with the (A)
Adaptive model and (D) Static model are statistically dif-
ferent at a 0.05 (*) and 0.01 (**) significance level when
applying a non-parametric Wilcoxon signed-rank paired test
to the 1,000 simulation replications. Furthermore, when the
proportion with the (A) Adaptive model or (D) Static model
is zero, we present the difference between the two propor-
tions (i.e., (A) Adaptive - (D) Static) and indicate this with a
“D” before the numerical value.

In Table 5, we present three shortage-waste weightings:
(δs, δw) ∈ {(0.075, 0.025), (0.05, 0.05), (0.025, 0.075)}.
When viewing Table 5, we note that the medication short-
age concern increases and the medication waste concern
decreases when viewing the shortage-waste weightings from
left to right. In Table 5, when modeling supply chain dis-
ruptions as a two-state discrete time Markov chain (see
Section 3.1),wepresent four supply chain disruption profiles:
(α(1), β(1)) = { ( 1

30 ,
1
10 ), ( 1

90 ,
1
30 ), ( 1

270 ,
1
90 ), ( 1

810 ,
1

270 )}.
All of the supply chain disruption profiles have the same
long-run probability that the supply chain is disrupted (i.e.,
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α(1)

α(1)+β(1) = 0.25). Fixing the long-run probability that the
supply chain is disrupted, from top to bottom, the four sup-
ply chain disruption profiles are listed in order of increasing
supply chain disruption duration.

In Table 5, we find that (e), for a fixed shortage-waste
weighting and long-run probability that the supply chain is
disrupted, if adaptive inventory policies are beneficial from a
shortage [waste] perspective, the benefits generally decrease
as the supply chain disruption duration increases. Similarly,
if adaptive inventory policies are detrimental from a short-
age [waste] perspective, the detriments generally decrease as
the supply chain disruption duration increases. As an exam-
ple, consider Labetalol with (δs, δw) = (0.05, 0.05). The
shortage ratio is less than 1 implying there are detriments in
implementing the (A) Adaptive model in comparison to the
(D) Static model. As the supply chain disruption duration
increases (move down the rows of the table), we notice that
the shortage ratio increases implying the detriments decrease.
It is likely that the (D) Static model performs better than the
(A) Adaptive model for Labetalol from a shortage perspec-
tive because this medication resembles a decreasing demand
disruption (see Fig. 4(b)). Therefore, if we never change the
inventory policy as done in the (D) Static model, we will
always be over-ordering. Consequently, the (D) Static model
leads to less shortages in comparison to the (A) Adaptive
model that updates the inventory policy when changes in
the mean demand occur. Keeping in mind that we are over-
ordering with the (D) Static model, as we would expect, the
(A) Adaptive model leads to a smaller proportion of drugs
wasted per day in comparison to the (D) Static model which
is seen with the waste ratio being greater than 1. We notice
that as the supply chain disruption duration increases (move
down the rows of the table), the waste ratio decreases imply-
ing the benefits decrease.

It is also worth noting that when a medication’s inventory
policy shifts from beneficial to detrimental as the sup-
ply chain disruption duration increases (e.g., see Avastin
(δs, δw) = (0.05, 0.05)), the same conclusion (e) holds.
Specifically, for these instances, as the supply chain dis-
ruption duration increases, the benefits of adaptive inven-
tory policies decrease until the adaptive inventory policies
become detrimental. When the adaptive inventory policies
become detrimental, the detriments decrease as the supply
chain disruption duration increases. Furthermore, when stat-
ing finding (e), we use the term generally because there
are instances where the relationship does not hold exactly,
but the difference in performance is very small (e.g., see
Labetalol with (δs, δw) = (0.025, 0.075) where 1.89 >

1.83). Although, this is most likely a result of simulation
sampling error.

We find that (f) as the expected supply chain disruption
duration increases, the trade-off between drug shortages and

drug waste becomes more apparent as improving one often
negatively impacts the other. To see this finding, consider
(δs, δw) = (0.05, 0.05) for Rocuronium. We notice that the
(A) Adaptive model is always beneficial from a shortage per-
spective as the shortage ratio is greater than 1. However, as
the supply chain disruption duration increases, we notice that
the (A) Adaptive model becomes detrimental from a waste
perspective as the ratio is less than 1 illustrating the trade-off
between drug shortages and drug waste.

The results from Table 5 also support the finding earlier
that (a) for a fixed supply chain disruption profile, a medi-
cation’s shortage-waste weighting dictates the magnitude of
the benefits (or detriments) of adaptive inventory policies.

5.5 Ranking analysis

In Section 3.3, we present a Pmetric ranking procedure that
prioritizes medications and indicates which medications are
of most concern. We proceed to describe a way of imple-
menting the ranking procedure in practice andwe analyze the
performance when applying this method to the 500 highest
(unit price)·(demand)medications at theUniversity ofMichi-
gan’s Central Pharmacy.We consider the total yearly demand
when selecting the 500 highest (unit price)·(demand) medi-
cations. When considering the highest (unit price)·(demand)
medications, we only considermedications that have demand
data available for the time period of interest (i.e., October
2019-November 2021) andusing this real-world demanddata
helps to capture the varying demand patterns that arise across
medications. We ensure that the data only includes medica-
tions (e.g., removedmedical supplies). 370medicationsmeet
this criteria.

For implementation, we consider that the Central Phar-
macy at the University of Michigan keeps record of Pmetric

every day for allmedications.We consider that every 30 days,
the Central Pharmacy decides which medications to update
using the average value of Pmetric over the most recent 30
days. However, instead of updating all medications that have
an average value of Pmetric greater than 0 (i.e., a value that
signals a change in the (R, S) inventory policy is needed),
we only allow the Central Pharmacy to update at most M (%)

percent of medications: M (%) ∈ {0, 2.5, 5, ..., 15}. If more
than M (%) percent of medications need to updated, we sort
the average value of Pmetric from largest to smallest for all
medications, and we only update the top M (%) percent of
medications. For the analysis, we consider the input param-
eters defined in Section 5.3. But, we assume that all 503B
medications have an expiration lifetime of 90 days which
is consistent with the class of 503B medications (i.e., about
3 months) and we assume that all non-503B medications
have an expiration lifetime of 360 days (i.e., about 1 year).
Through discussions with our hospital pharmacy collabo-
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rators, non-503B medications have a variety of expiration
lifetimes and much longer lifetimes than 503B medications.
We select 360 days for these medications because it is a
conservative expiration lifetime estimate. Also, we consider
(δs, δw) = (0.05, 0.05) for the shortage-waste weighting,
(α(1), β(1)) = ( 1

90 ,
1
30 ) for the supply chain disruption pro-

file, and we focus on the (A) Adaptive model where updates
can only occur every 30 days (i.e., no buyback is in place).
We present the average proportion of drug shortages per day
across all medications and the average proportion of drugs
wasted per day across all medications. We also present the
cost of wasting a drug relative to the cost of a drug short-
age that is required for the reduction in drug shortages to
equally outweigh the detriments of drug waste. To calcu-
late this value, we take the absolute difference between the
average number of drug shortages with M (%) percent and 0
percent updates across all medications divided by the abso-
lute difference between the average number of drugs wasted
with M (%) percent and 0 percent updates across all medica-
tions.When the cost of wasting a drug relative to the cost of a
drug shortage exceeds this value, it implies that the reduction
in drug shortages does not outweigh the detriments of drug
waste. Figure 8 illustrates the results.

We find that (g) there is a decreasingmarginal benefit from
a drug shortage perspective as the maximum percent of med-
ications that can be updated increases. This implies that a
decision-maker needs to update a very small proportion of
medications at any point in time to get the greatest benefits of
adaptive inventory policies. From a drug waste perspective,
there is a decreasingmarginal detriment as themaximumper-
cent of medications that can be updated increases. However,
the detriments from a drug waste perspective are very small

practically speaking. Furthermore, with the results illustrat-
ing the trade-off between drug shortages and drug waste (i.e.,
decrease in drug shortages but increase in drug waste), we
take a deeper look at the cost of wasting a drug relative to
the cost of a drug shortage that is required for the reduc-
tion in drug shortages to equally outweigh the detriments of
drug waste (see Fig. 8 row 3). We find that (h) the cost of
wasting a drug would need to be far greater than the cost
of a drug shortage for the reduction in drug shortages to
not outweigh the detriments of drug waste. For example,
consider M% = 2.5. The cost of wasting a drug would
need to be about 3.5 times the cost of a drug shortage for
the reduction in drug shortages to not outweigh the detri-
ments of drug waste. Drug shortages can increase the cost of
care, increase medication errors, and delay/cancel treatment
[7]. Therefore, except for the few very high priced medi-
cations purchased on an order-by-order basis, it is highly
unlikely that the cost of wasting a drug would be greater
than a drug shortage let alone 3.5 times the cost of a drug
shortage. It is worth noting that when we consider the 500
highest priced medications and the 500 highest demanded
medications (total yearly demand), findings (g) and (h)
continue to hold. Furthermore, if we consider the high-
est (unit price)·(demand) medications with all supply chain
disruption profiles (i.e., (α(1), β(1)) = {( 1

30 ,
1
10 ), ( 1

90 ,
1
30 ),

( 1
270 ,

1
90 ), ( 1

810 ,
1

270 )}) and shortage-waste weightings (i.e.,
(δs, δw) ∈ {(0.025, 0.075), (0.05, 0.05), (0.075, 0.025)})
combinations presented in Table 5, we continue to find sim-
ilar trends to those stated in finding (g) for the proportion of
drug shortages and proportion of drugs wasted except when
(α(1), β(1)) = ( 1

810 ,
1

270 ). When (α(1), β(1)) = ( 1
810 ,

1
270 ),

we find that the proportion of drug shortages and proportion

Fig. 8 Average proportion of
drug shortages across all
medications, average proportion
of drugs wasted across all
medications, and the cost of
wasting a drug relative to the
cost of a drug shortage that is
required for the reduction in
drug shortages to equally
outweigh the detriments of drug
waste. The analysis focuses on
the highest (unit
price)·(demand) medications at
the University of Michigan’s
Central Pharmacy and for the
analysis, a decision-maker can
update at most M (%) percent of
medications every 30 days
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of drugs wasted are fairly stable across the values of M%

that we consider. We note that this supply chain disruption
profile implies that the expected duration of a supply chain
disruption is 270 days (i.e., about 3

4 of a year). In practice,
when pharmacists begin to see these very long durations of
supply chain disruptions, pharmacists will try to take correc-
tive actions (e.g., shift to alternative treatment that is equally
effective, shift to alternative dosage form such as an IV over
oral, ration treatment) to minimize disturbances to the sys-
tem.

5.6 Additional takeaways

We gain additional takeaways by analyzing (T1) the sensitiv-
ity ofN (i.e., number of past daily demand observations used
to estimate the expected daily demand) and (T2) the length
of demand disruptions. Additional details are provided in
Czerniak [44]. We find that:

(T1) It is important to have a large enough N to avoid high
shortage and/orwaste detriments, but not too large such
that the benefits of an adaptive model start to decrease.
Furthermore, a medication with a higher variability in
demand (i.e., a larger standard deviation) often requires
a larger N to avoid high shortage and/or waste detri-
ments. As a rule of thumb, we suggest using about
50 daily demand observations when selecting N (e.g.,
N = 49, 7 weeks; N = 56, 8 weeks).

(T2) Given we vary the length of the demand disruption (for
both increasing and decreasing demand disruptions),
the benchmark model that only updates the inventory
policy every B = 90 days using the average demand
from the recent B = 90 days can lead to very poor
performance. Furthermore, the adaptive model with
buyback often performs better than the adaptive model
without buyback for varyingdemanddisruption lengths
encouraging the use of such programs.

6 Conclusion

This research considers a perishable inventory system with
supply chain disruptions and demand disruptions. This
research leverages simulation modeling to distinguish how
a medication’s shortage-waste weighting (i.e., concern for
shortages versus concern for waste) along with the duration
of and time between supply chain disruptions influences the
benefits (or detriments) of adapting to demand disruptions.

Managerial Insights
We find that when fixing the mean duration of and

mean time between supply chain disruptions, a medication’s
shortage-waste weighting dictates the magnitude of the ben-

efits (or detriments) of adaptive inventory policies. We also
find that for a fixed shortage-waste weighting and long-run
probability that the supply chain is disrupted, if adaptive
inventory policies are beneficial from a shortage [waste] per-
spective, the benefits generally decrease as the supply chain
disruption duration increases. Similarly, if adaptive inventory
policies are detrimental from a shortage [waste] perspec-
tive, the magnitude of the negative impact of the adaptive
inventory policies decreases as the supply chain disruption
duration increases. Furthermore, when fixing the long-run
probability that the supply chain is disrupted, we find that
long supply chain disruption durations are the most sensitive
to the trade-off between drug shortages and drug waste as
improving one often negatively impacts the other. The results
also suggest that hospital pharmacies should avoid updating
the inventory policy on long fixed intervals and negotiate
for buyback programs when establishing contracts with their
suppliers/wholesalers. For the latter, this is under the assump-
tion that a buyback program adds no additional costs to
the hospital pharmacy inventory system. When looking at a
large collection ofmedications,wefind that a decision-maker
needs to update a very small proportion of medications (e.g.,
< 5%) at any point in time to get the greatest benefits of
adaptive inventory policies.

Future Research
Our research illustrates that it is often beneficial for hos-

pital pharmacies to participate in buyback programs. We do
not consider buyback programs from the supplier perspective
and we assume that the hospital pharmacy receives full com-
pensation for the returned drug. If we assume that the hospital
pharmacy does not receive full compensation for the returned
drug, then the suppliermay greatly benefit frombuyback pro-
grams because they can possibly sell this collected drug to
other hospital pharmacies at full price. However, there is no
guarantee that another hospital pharmacy will purchase this
returned drug before it expires. Hence, it would be inter-
esting to study if the supplier should only accept a certain
number of drugs or drugs with a certain remaining shelf
life from the hospital pharmacy to reduce costs and waste
at the supplier. We leave these studies for future research.
Another area for future research is incorporating the relation-
ship between substitute medications and demand disruptions
into the adaptive inventory system. Through discussionswith
our hospital pharmacy collaborators, the demand disruptions
for the 503B medications analyzed in Section 5.4.2 are a
result of changes in the patient population during the Covid-
19 pandemic. However, additional analyses (see Appendix
Section D) illustrate that changes in the patient population
for the primary medication may influence the demand for
the substitute medication. In addition, we consider (R, S)

inventory policies which are commonly implemented in
practice. Future research can study other inventory policies
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(e.g., (s, S) inventory policies) and how adapting these
policies impact the performance of the inventory system.
Furthermore, when considering (R, S) inventory policies,
we assume full and accurate knowledge of the inventory
on-hand. Future research can consider the case where inven-
tory records are inaccurate [13]. A final direction for future
research is using the adaptive inventory system presented in
this research and analyzing how dynamic supply chain dis-
ruption parameters (i.e., α(1) and β(1)) influence the results.

Closing Thoughts
Decision-making is difficult in hospital pharmacy inven-

tory systems due to perishability, supply chain disruptions,
and demand disruptions. A medication’s shortage-waste
weighting and supply chain disruption profile influence the
benefits (or detriments) of adapting to demand disruptions,
and hospital pharmacy managers should consider these char-
acteristics when implementing such policies in practice.

Appendix

A The (R, S)model

The (R, S) model provides the optimal length of the review
period R∗ and order-up-to level S∗ in closed-form for a
lost-sales perishable inventory system with supply chain dis-
ruptions.

A.1 Summary of the (R, S)model

Wesummarize the procedure presented inCzerniak et al. [30]
to solve for a lost-sales (R, S) perishable inventory policy
in a system with supply chain disruptions (two-state supply
process). The four requirements that must be satisfied by

the input parameters are γ ≤ α(R)

α(R)+β(R) , γ > 0, α(R) > 0,

and 0 < β(R) < 1 (see Table 2). Also, the closed-form

expressions treat the length of the review period (R) and the
order-up-to level (S) as continuous decision variables.

Step 1: Solve for the Optimal m∗, R∗, and S∗ for a Non-
Perishable Inventory System

Using Eqs. A.1-A.3, solve for the optimalm∗, R∗, and S∗,
respectively.

m∗ =
⌊ ln( (α(R)+β(R))(1−β(R))γ

α(R) )

ln(1 − β(R))

⌋
(A.1)

R∗ = max

{
1,

√
2α(R)β(R)(α(R) + β(R))(1 − β(R))(1 − β(R))m

∗k

qh(A1 + A2)

}
(A.2)

where:

A1 = m∗(2α(R)β(R)(1 − β(R))m
∗
)(−α(R)β(R)

+ α(R)β(R)(1 − β(R))m
∗ + β(R) + α(R) − (β(R))2)

A2 = (−2(α(R))2γ − 2(β(R))2γ + 4(β(R))3γ − 2(β(R))4γ

+ (α(R))2γ 2 + (β(R))2γ 2 − 2(β(R))3γ 2

+ (β(R))4γ 2 − 4α(R)(β(R))2γ 2

−2(α(R))2β(R)γ 2 − 2(α(R))2(β(R))2γ + 2α(R)(β(R))3γ 2

−4α(R)β(R)γ + (α(R))2(β(R))2γ 2 + 2α(R)β(R)γ 2

+ 8α(R)(β(R))2γ

+ 4(α(R))2β(R)γ − 4α(R)(β(R))3γ + 2(α(R))2(β(R))2γ (1

−β(R))m
∗ − 2α(R)(β(R))2γ (1

−β(R))m
∗ − 2(α(R))2β(R)γ (1 − β(R))m

∗

+ 2α(R)(β(R))3γ (1 − β(R))m
∗ + (α(R))2(1 − β(R))2m

∗

+ 2α(R)β(R)(1 − β(R))m
∗ − 3α(R)(β(R))2(1 − β(R))m

∗

−(α(R))2β(R)(1 − β(R))m
∗ + α(R)(β(R))3(1 − β(R))m

∗

+ (α(R))2β(R)(1−β(R))2m
∗ +(α(R))2(β(R))2(1 − β(R))m

∗
)

S∗ = qR∗
(−γ (α(R) + β(R))(1 − β(R)) + α(R)(1 − β(R))m

∗ + α(R)β(R)m∗(1 − β(R))m
∗

α(R)β(R)(1 − β(R))m
∗

)
(A.3)

m∗ =
⌊ ln( (α(R)+β(R))(1−β(R))γ

α(R) )

ln(1 − β(R))

⌋
(A.4)

R∗ = max

{
1,

e
−γ (α(R)+β(R))(1−β(R))+α(R)(1−β(R))m

∗+α(R)β(R)m∗(1−β(R))m
∗

α(R)β(R)(1−β(R))m
∗

}
(A.5)

S∗ = eq (A.6)
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Step 2: Check if S∗ ≤ eq
If S∗ ≤ eq, then m∗, R∗, and S∗ found using Eqs. A.1-

A.3 represent the optimal (R, S) inventory policy for the
perishable inventory system. If S∗ > eq, proceed to Step 3.

Step 3: Enforce the Perishability Condition by Setting S∗ =
eq

Using Eqs. A.4-A.6, solve for m∗, R∗, and S∗, respec-
tively.

When S∗ ≤ eq (i.e., the non-perishable model suffices;
Step 3 is not necessary), the maximum proportion of drug
shortages per day constraint (i.e., γ ) is always satisfied
because S∗ depends on R∗. Further, the constraint for the
maximum proportion of drug shortages per day is tight (i.e.,
maximum proportion of drug shortages per day equals γ ).
When the perishability condition is enforced (i.e., Step 3
is necessary), there may be instances where the maximum
proportion of drug shortages per day constraint cannot be sat-
isfied because S∗ is constrained to eq and no longer depends
on R∗. When the maximum proportion of drug shortages
per day constraint cannot be satisfied, the optimal inventory
policy is always (R∗ = 1, S∗ = eq) (i.e., the smallest R∗
and the largest S∗) as this maximizes the expected inventory
on-hand.

When solving for the (R, S) inventory policy, the solutions
are expressed in closed-form, but they are solved iteratively
to account for a two-state supply process. The disruption
probability (i.e., α(R)) and recovery probability (i.e., β(R))
presented in Eqs. A.1-A.6 must be defined with respect to
the length of the review period (R). However, the length of
the review period is not known until solved using the closed-
form expressions (i.e., Eqs. A.1-A.3 or A.4-A.6). Therefore,
we implement the iterative algorithm for a two-state supply
process presented in Czerniak et al. [30] where α(i) and β(i)

denote the disruption and recovery probability, respectively,
for a review period of length i days. The algorithm takes α(1)

and β(1) as input (i.e., α and β are defined with respect to
1 day) and finds the appropriate values α(R) and β(R) using
the i-step transition probability matrix. We denote P(i) as the
i-step transition probability matrix (see Eq. A.7; [42]).

P(i) =
( · α(i)

β(i) ·
)

=
(

(1 − α(1)) α(1)

β(1) (1 − β(1))

)i

(A.7)

The full iterative algorithm is presented in the earlier
research [30].

B Proportionmetrics

We present how to calculate the expected proportion of drug
shortages per day (in Appendix B.1) and the expected pro-
portion of drugs wasted per day (in Appendix B.2).

B.1 Expected proportion of drug shortages

In Section 3.2.1 of the main paper, we present the expected
proportion of drug shortages per day in Eq. 4. The expected
proportion of drug shortages per day depends on the length of
the review period (R), the order-up-to level (S), the expected
daily demand (q̄), the disruption probability (α(R)), and the
recovery probability (β(R)). Proportion is measured relative
to the expected daily demand q̄ .

When deriving the closed-form (R, S) inventory policy
solutions, Czerniak et al. [30] assume that m = � S

q̄ R � ≥ 1
(i.e., S covers at least 1 review period; see Table 2 in Sec-
tion 3.1). Therefore, when m ≥ 1, we directly use the
two-state supply process results found in Czerniak et al. [30].
When m < 1, the order-up-to level S does not cover a full
review period (i.e., q̄ R > S). The expected proportion of
drug shortages consists of two components: (a) the long-
run probability that the supply chain is not disrupted (i.e.,

β(R)

α(R)+β(R) ) multiplied by the expected number of drug short-
ages in a review period of length R (i.e., q̄ R − S) divided
by the demand in a review period of length R (i.e., q̄ R) and
(b) the long-run probability that the supply chain is disrupted

(i.e., 1− β(R)

α(R)+β(R) ) multiplied by 1. For (b),m does not cover
a full review period, so any time the supply chain is disrupted,
the inventory system has zero inventory on-hand resulting in
an expected proportion of drug shortages per day of 1. We do
not account for stochastic demand as past research illustrates
that stochastic demand that is normally distributed has a neg-
ligible impact on the expected proportion of drug shortages
per day with the (R, S) model.

B.2 Expected proportion of drugs wasted

In Section 3.2.1 of the main paper, we present the expected
proportion of drugs wasted per day in Eq. 5. We calculate the
expected proportion of drugswasted given a (R, S) inventory
policy with expected daily demand q̄ and standard deviation
of daily demand σ (i.e., Pwaste|(q̄,σ,R,S)). We consider the
expiration lifetime (e), the length of the review period (R),
the order-up-to level (S), the expected daily demand (q̄), the
standard deviation of daily demand (σ ), the disruption proba-
bility (α(R)), and the recovery probability (β(R)). Proportion
ismeasured relative to the expected number of drugs ordered.

To derive (5), we first consider the case with deterministic
daily demand q̄ and no supply chain disruptions. When we
follow a (R, S) inventory policy for a perishable drug with
expiration lifetime e, the inventory system follows a cyclic
pattern where each cycle lasts � e

R 	 · R days. We note that
the (R, S) model assumes e ≥ 1 and R ≥ 1. On day e
in the cycle, we discard max{0, S − eq̄} drugs. As a specific
example, consider R = 3 days and e = 5 days. In Table 6, we
present the cyclic pattern of the inventory system where we
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Table 6 Cyclic pattern of the (R, S) inventory system with perishability

vary S in increments of q̄ . We use the same table convention
as presented in [29]. For S < eq̄ , the inventory system has a
cycle of R days which is a factor of � e

R 	 · R and for S ≥ eq̄ ,
the inventory systemhas a cycle of � e

R 	·R days, sowe simply
conclude each cycle lasts � e

R 	 · R days.
We now formally define a cycle as a period of time such

that on day e in the cycle, max{0, S − eq̄} drugs are wasted.
There is zero waste on all other days in the cycle. With deter-
ministic daily demand q̄ and no supply chain disruptions, we
have the results presented in Eqs. B.1-B.2.

E[no. of drugs wasted per cycle]
= max{0, S − eq̄} (B.1)

E[no. of drugs ordered in a cycle]

=
no. used︷ ︸︸ ︷
� e
R

	Rq̄ +
no. wasted︷ ︸︸ ︷

max{0, S − eq̄}
(B.2)

We next consider that we have deterministic daily demand
q̄ and supply chain disruptions that follow a two-state supply

process. Given we have a supply chain disruption, we need to
consider which day in the cycle the supply chain disruption
begins to accurately calculate the number of drugs ordered
in the cycle. Recall that a cycle lasts � e

R 	 · R days when the
supply chain is not disrupted. Each cycle has � e

R 	 days that
correspond to a review period day. Givenwe know that a sup-
ply chain disruption occurs in the cycle, out of the � e

R 	 days
in the cycle that correspond to a review period day, there is an
equal probability that the supply chain disruption begins on
any of these review period days. Hence, the probability that
the supply chain disruption starts on any review period day
in the cycle is 1

� e
R 	 . Taking into account the day the supply

chain disruption starts in a cycle, we have the results pre-
sented in Eqs. B.3-B.4. π j is the probability that the supply
chain is disrupted for exactly j consecutive review periods

(π0= β(R)

α(R)+β(R) ; π j = α(R)β(R)

(α(R)+β(R))(1−β(R))
(1−β(R)) j , j ≥ 1).

E[no. of drugs wasted per cycle] = max{0, S − eq̄} (B.3)
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E[no. of drugs ordered in a cycle] = (B.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S; � e
R 	 = 1

(� e
R 	Rq̄ + max{0, S − eq̄})π0 +

∞∑
j=� e

R 	−1
π j (S + Rq̄(

(� e
R 	−1)
2 )); � e

R 	 = 2

(� e
R 	Rq̄ + max{0, S − eq̄})(π0 +

� e
R 	−2∑
j=1

π j − 1
� e
R 	

� e
R 	−2∑
j=1

jπ j ) + S
� e
R 	

� e
R 	−2∑
j=1

jπ j + Rq̄
� e
R 	

� e
R 	−2∑
j=1

j2π j

+
∞∑

j=� e
R 	−1

π j (S + Rq̄(
(� e

R 	−1)
2 )); � e

R 	 ≥ 3

where π0 = β(R)

α(R) + β(R)

� e
R 	−2∑
j=1

π j = α(R)β(R)

α(R) + β(R)

(
1 − (1 − β(R))� e

R 	−2

β(R)

)

∞∑
j=� e

R 	−1

π j = 1 −
� e
R 	−2∑
j=0

π j = 1 − π0 −
� e
R 	−2∑
j=1

π j

� e
R 	−2∑
j=1
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E[max{0, S −
e∑

i=1

Qi }] = Ew = S · Pr(Z <
S − eq̄√

eσ 2
) − eq̄ − 1

2π

(
− e

− (S−eq̄)2

2eσ2 + e
− (−eq̄)2

2eσ2
)√

eσ 2 (B.6)

Next, we incorporate stochastic demandwhere we assume
that the daily demand is normally distributed with mean q̄
and standard deviation σ . For the deterministic demand case,
we have a demand of exactly eq̄ in a period of e days. Thus,
we waste exactly max{0, S − eq̄} drugs in each cycle. When
we have stochastic demand, we may not have a demand of
exactly eq̄ in a period of e days. Letting Qi denote a nor-
mal random variable with mean q̄ and standard deviation
σ for the demand on day i , we consider the expectation

of max{0, S − eq̄} presented in Eq. B.5 and simplified in

Eq. B.6. In Eq. B.6, we assume that
e∑

i=1
Qi ≥ 0 as demand

is always non-negative. It is worth noting that Eq. B.6 can
easily be modified to accommodate other probability distri-
butions (e.g., Poisson) by using the appropriate expectation
and cumulative distribution function.

UsingEq.B.6 in Eqs. B.3-B.4 and the relation presented in
Eq. B.7, we have the expected proportion of drugs wasted per
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day presented in Eq. 5 of themain paper. Equation 5 accounts
for a (R, S) inventory system with supply chain disruptions
that follow a two-state supply process and stochastic demand
that is independent and normally distributed.

Ewaste|(q̄,σ,R,S)

= E[no. of drugs wasted per cycle]
E[no. of drugs ordered in a cycle]

(B.7)

C Numerical analysis: additional data

We proceed to present the weekly demand data for the four
other 503B drugs of interest presented in Section 5.4 of
the numerical analysis: Avastin, Oxytocin, Cefazolin, Nore-
pinephrine (in Section C.1).

C.1Weekly demand data for the other 503B drugs
of interest

We present the weekly demand data for the four other 503B
drugs of interest: Avastin 1.25mg/0.05mL (chemotherapy

with several indications; seeFig. 9(a)),Oxytocin 30units/500
mL (induction of labor; see Fig. 9(b)), Cefazolin 2gm/100mL
(antibiotic; see Fig. 9(c)), Norepinephrine 16 mg/250mL
(vasopressor used to increase blood pressure; see Fig. 9(d)).
The red lines in the figures denote the corresponding mean
weekly demand that minimizes the sum of squared errors for
the daily demand data. For Avastin, Oxytocin, and Cefazolin,
we consider two mean weekly demand values and for Nore-
pinephrine, we consider three mean weekly demand values.

D Future research: substitute medications

An area for future research is incorporating the relationship
between substitute medications and demand disruptions into
the adaptive inventory system.We proceed to present an anal-
ysis for motivation.

We first consider the 503B medication Rocuronium
10mg/1mL (i.e., Rocuronium (503B); see Section 5.1). If
this 503B medication is not available, pharmacists will pre-
scribe the non-503BmedicationRocuronium10mg/1mLvial
(i.e., Substitute forRocuronium (503B)).We second consider

Fig. 9 Weekly demand versus day in the planning horizon. We remove the weekly demand values on the y-axis for data confidentiality
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Fig. 10 Weekly demand versus calendar date. Numerical values are removed on the y-axis for data confidentiality

the 503B medication Labetalol 5mg/1mL (i.e., Labetalol
(503B); see Section 5.1). If this 503Bmedication is not avail-
able, pharmacists will prescribe Labetalol 5mg/mL injection
carpuject syringe (i.e., Substitute for Labetalol (503B) - 1) or
Labetalol 5mg/mL - 20mL vial (i.e., Substitute for Labetalol
(503B) - 2). Through discussions with our hospital phar-
macy collaborators, beyond the substitutes described for each
503B medication, there are not great substitute medications
because othermedications in these classes havedifferent clin-
ical implications and concerns.

Using the real-world demand data provided by theUniver-
sity of Michigan’s Central Pharmacy, we provide the weekly
demand for Rocuronium (see Fig. 10(a)) and Labetalol (see
Fig. 10(b)) from October 1, 2019 - November 22, 2021. We
note that through discussionswith our hospital pharmacy col-
laborators, the demand disruptions for Rocuronium (503B)
and Labetalol (503B) are a result of changes in the patient
population during the Covid-19 pandemic. When focusing
on Labetalol (see Fig. 10(b)), we find that as the demand for
Labetalol (503B) decreases, the demand for Substitute for
Labetalol (503B) - 1 increases suggesting that changes in the
patient population for the primary medication may influence
the demand for the substitute medication.
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