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Abstract

As the building sector contributes approximately three-quarters of the U.S. electricity load, analyzing buildings’
energy consumption patterns and establishing their effective operational strategy become of great importance. To
achieve those goals, a physics-based building energy model (BEM), which can simulate a building’s energy demand
under various weather conditions and operational scenarios, has been developed. To obtain accurate simulation out-
puts, it is necessary to calibrate some parameters required for the BEM’s pre-configuration. The BEM calibration is
usually accomplished by matching the simulated energy use with the measured one. However, even with the efforts
to calibrate the BEM at best, a systematic discrepancy between the two quantities is often observed, preventing the
precise estimation of the energy demand. Such discrepancy is referred to as bias in this study. We present a new cali-
bration approach that models the discrepancy to correct the relationship between the simulated and measured energy
use. We show that our bias correction can improve predictive performance. Additionally, we observe the heteroge-
neous variance in the electricity loads, especially in the afternoon hours, which often reduces prediction accuracy and
increases uncertainty. To address this issue, we incorporate heterogeneous weights into the least squares loss function.
To implement the bias-correction procedure with the weighted least squares formulation, we propose a newly devised
iteratively reweighted least squares algorithm. The effectiveness of the proposed calibration methodology is evaluated
with a real-world dataset collected from a residential building in Texas.
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1. Introduction

As the building sector accounts for approximately 40% of the primary energy use and 72% of electricity loads in
the U.S. (U.S. Energy Information Administration 2015), it becomes vital to analyze the energy consumption patterns
of buildings and improve their energy efficiency. In response, physics-based building energy models (BEMs) have
been developed, which are capable of simulating a building’s energy consumption, including electricity and gas or
steam energy, by maneuvering various conditions of heating, ventilation, and cooling (HVAC), lighting, and plug and
process loads under various weather conditions, operational schedules, and building geometry. Another usage of the
BEMs includes, but not limited to, HVAC system design and operation, retrofit analysis, and architectural design.
Among several BEMs (or building energy simulation engines), the U.S. Department of Energy’s National Renewable
Energy Laboratories developed a simulator, called EnergyPlus (U.S. Department of Energy 2019), which has gained
much popularity in evaluating a building’s energy performance in the literature (Chong et al. 2021).

However, several studies report a considerable discrepancy between simulated and actual energy use, raising con-
cerns about the model’s reliability in the building sector (Turner et al. 2008, Mantesi et al. 2018). Due to the advances
in smart metering and industrial internet of things (IIoT) technologies, this discrepancy becomes more evident (Chong
et al. 2021). Several reasons for the discrepancy have been discussed in prior studies (De Wit and Augenbroe 2002,
Menezes et al. 2012, Chakrabarty et al. 2021). Assuming that building specifications are sufficiently detailed and data
accuracy is guaranteed, that is, the data source and measurement techniques are reliable, the discrepancy could result
from (i) parameter uncertainty arising from the fact that the initial (or default) values of simulation parameters in BEM
descriptions would not accurately reflect the underlying physics, and (ii) model inadequacy caused by simplifications
and abstractions of a real building’s energy systems. Thus, the calibration procedure for reducing the discrepancy
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between the simulated energy consumption and actual observations, along with suitable uncertainty analysis, is es-
sential to enhancing model reliability. The International Energy Agency’s Energy in Buildings and Communities
(IEA-EBC) Annex 53 also discussed the importance of model calibration and uncertainty quantification to obtain a
credible BEM (Yoshino et al. 2017).

Model calibration is usually accomplished by adjusting simulation parameters so that the simulated values of
energy consumption are closely aligned with the actual observations. It is also known as parameter calibration in
the literature (Xu et al. 2021, Liu et al. 2021, Jeong et al. 2023), aiming to capture a target building’s real physical
dynamics. Once calibrated, the parameters are not only useful for the accurate simulation of energy use but also
enable us to infer information about the states in the building’s energy system and their physical implications.

Even with the efforts to calibrate the BEM parameters as accurately as possible, a systematic discrepancy between
the two series of simulated and actual energy consumption often exists. This discrepancy is referred to as bias in
this study. The bias may exhibit a distinct pattern, such as a daily cycle (Jang et al. 2023), which needs to be taken
into consideration in the calibration procedure. Statistical approaches that account for the bias have been discussed
in the Bayesian calibration literature (Kennedy and O’Hagan 2001). In fact, Bayesian calibration has been widely
used with its uncertainty quantification capabilities in the building energy literature (Coakley et al. 2014, Chong and
Menberg 2018). Despite its popularity, one of its biggest drawbacks is the high computational cost, particularly when
dealing with high-resolution data, such as hourly and sub-hourly data. Thus, its application has been limited to low-
resolution aggregated data such as weekly (Kristensen et al. 2017), monthly (Heo et al. 2015, Li et al. 2016, Kim and
Park 2016, Tian et al. 2016, Sokol et al. 2017), or annual (Booth et al. 2013) data. This might also be a common
practice since electricity and gas or steam data were usually obtained from utility providers who typically provided
aggregated monthly data (Chong et al. 2021). Unfortunately, the low-resolution data may lose useful information in
data aggregation.

To alleviate computational burden, Li et al. (2016) suggested a lightweight Bayesian calibration approach that
employs a linear regression emulator. Menberg et al. (2017) applied Hamiltonian Monte Carlo to enhance posterior
estimation efficiency. In spite of these advancements, computational demands still remain a hurdle in the Bayesian
calibration, limiting its practicality to small-size datasets. For instance, Jeong et al. (2023) reported that it took several
days to calibrate multiple BEM parameters with weekly data using the lightweight Bayesian approach and that, despite
the long computation time, the calibration results were not informative, presumably due to the information loss during
data aggregation.

Recently, advances in smart metering and IIoT technologies enable us to access high-resolution data with high
precision. This big data stream brings us the opportunity to implement optimization-based methods for calibration.
Jeong et al. (2023) presented a BEM calibration method that utilizes a gradient-based optimization technique with
hourly data. Chakrabarty et al. (2021) applied Bayesian optimization (BO) with relatively large-size datasets for
the BEM calibration. However, these studies did not consider the bias in their procedure, possibly leading to an
incomplete relationship between the simulated and actual energy consumption.

Additionally, we note that the heterogeneous variance in the electricity loads is particularly pronounced in the
afternoon in the case study considered in this article. Although there is a general electricity consumption pattern
in the afternoon, the specific hour-by-hour electricity loads show very varied patterns each day (see more details in
Section 3). Such heteroskedasticity is a violation of the typical constant variance assumption in the literature, which
could reduce prediction accuracy and increase estimation uncertainty. However, no studies in the BEM calibration
literature account for the heterogeneous variance. To address this issue, we introduce heterogeneous weights within
the least squares loss function between the two time series, leading to the weighted least squares formulation.

To address these challenges, this study presents a new calibration approach that models the bias to correct the
relationship between the simulated and measured energy use and, at the same time, introduces heterogeneous weights
within the loss function between the two time series of simulated and actual ones in order to mitigate heteroskedastic-
ity. To calibrate the BEM parameters and estimate other model parameters in an integrative framework, we propose
a newly devised iteratively reweighted least squares (IRLS) algorithm. To the best of our knowledge, this is the first
research to present the IRLS method in conjunction with the bias-correction procedure in the BEM calibration.

We summarize our contributions as follows. First, in order to calibrate the BEM parameters and align the BEM
outputs with actual electricity use, we provide a new modeling approach that debiases the BEM outputs while ac-
counting for the heterogeneous variance. Second, we present a new procedure to estimate the BEM and other model
parameters integratively. Third, utilizing the fact that the calibrated parameter values become maximum likelihood

2



(ML) estimates, we quantify the estimation uncertainties and construct asymptotically valid confidence intervals for
the BEM parameters. Lastly, we conduct a case study using a real-world electricity consumption dataset collected
from a residential building in Texas to evaluate the effectiveness of the proposed calibration methodology.

Notably, our case study demonstrates that the proposed method, when compared to other alternatives, significantly
improves prediction accuracy for the electricity demands while simultaneously reducing the uncertainties of the cali-
brated parameters, satisfying the industry guidelines and protocol. Moreover, our uncertainty quantification procedure
results in constructing narrower confidence intervals, i.e., smaller uncertainties, compared to alternative methods.

The rest of this paper is organized as follows. Section 2 introduces a linear linkage model that assumes no bias
in the model. Section 3 formulates a calibration problem that debiases the BEM outputs, provides an approach to
mitigate heteroskedasticity, and designs a new bias-correction algorithm for parameter calibration within the IRLS
framework. Section 4 demonstrates the superiority of our proposed approach through the real-world BEM calibration
case study for a residential building in Texas. Section 5 provides concluding remarks.

2. A Linear Linkage Model without Bias Assumption

Before discussing our proposed approach, we first present the widely used linear linkage model and its limitations.
Let xt ∈ RMx denote a vector of Mx physically observable input variables for the BEM, such as dry-bulb temperature,
wind speed, solar radiation, and relative humidity, collected in a building’s surrounding area at time t for all t =
1, . . . ,T , where T is the number of historical time-series observations. Let θ ∈ RPθ denote a vector of calibration
parameters where the range of the ith parameter is [ai, bi] with ai and bi known constants for all i = 1, . . . , Pθ,
implying that the domain of θ is a hyperrectangle Θ :=

∏Pθ
i=1[ai, bi]. The parameters we consider in this study are

those related to envelop (e.g., solar transmittance), zone (e.g., air flow rate), and HVAC (e.g., cooling coefficient of
performance and component capacity), but one can select others according to the calibration goal and scenario. Let
y(xt) denote a real-valued noisy field observation for an input xt, such as the measurement of energy consumption,
including gas or electricity use, within the building. In this study, we consider the hourly electricity consumption. Let
η(xt; θ) denote a real-valued output from the BEM, such as the energy consumption value simulated by the BEM. We
consider the deterministic computer model that generates a fixed output given xt.

This study aims to align η(xt; θ) with y(xt) reasonably well to accurately predict electricity consumption through
the BEM simulation. To do this, the unknown parameters θ should be properly estimated using operational data.
Let us first consider that a simulator precisely represents the underlying physical process when the true (or correct)
parameters are used. This type of computer model is called a perfect computer model in the literature (Tuo and Wu
2015). To connect field observations with the computer model outputs, a linear linkage model has been proposed in
the literature (Higdon et al. 2004) as follows:

y(xt) = η(xt; θ) + ϵt, ∀t = 1, . . . ,T, (1)

where an observation error ϵt is assumed to be an independent and identically distributed (iid) random variable that
follows a normal distribution with mean zero and variance σ2, concisely, ϵt

iid
∼ N(0, σ2).

Let θ∗ denote the correct parameter values. Mathematically, a perfect computer model implies that E[y(xt)] =
η(xt; θ∗) holds for all t. In other words, there is no bias and the BEM simulator generates unbiased results over time
when θ is correctly estimated. Under this unbiasedness assumption, the calibration problem is to identify the estimator
θ̂ that minimizes the difference between y(xt) and η(xt; θ) for all t (Jeong et al. 2023). The difference can be quantified
by some difference measures, among which the following mean squared error (MSE) is widely employed.

min
θ∈Θ

1
T

T∑
t=1

(y(xt) − η(xt; θ))2. (2)

When a small number of field observations are available and/or the computer model is expensive to run, surrogate-
based approaches, such as Bayesian calibration (Higdon et al. 2004) and L2 calibration (Tuo and Wu 2015), have been
used in the literature to accommodate scarce data. They typically pre-specify design points xt and θ and estimate
the true process ζ(xt), where y(xt) = ζ(xt) + ϵt and/or η(xt; θ) using those design points. They are particularly useful
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when there is a limited amount of available data (Liu et al. 2021). Recently, some limitations of these surrogate-
based approaches are discussed when a sufficient number of field observations are available and computer models
are relatively cheap to run, and new approaches are proposed using the nonlinear optimization techniques (Liu et al.
2021, Xu et al. 2021, Jeong et al. 2023, Jain et al. 2023). They do not pre-design the input data, but generate them
on the fly as they learn. Their methods are especially useful when data generation from the computer model is not
computationally intensive, e.g., when each simulation run takes in the range of seconds.

However, the “no-bias” assumption in the linkage model (1) could be restrictive and thus often violated in real-
world applications. Take the BEM calibration problem for a residential building in Texas as an example (see more
details in Section 4). We use the data collected during the first 20 days of July in 2014 as a training set to calibrate the
BEM parameters. We use BO for minimizing the loss function in (2). We choose BO, because it is intended to find
the global minimum of the loss function when data is generated from a black-box computer model (Shahriari et al.
2015, Frazier 2018), such as the BEM. More details about BO will be discussed in Section 3.3. After calibrating θ,
we check whether the bias between y(xt) and η(xt; θ̂) exists and if it exists, how the bias pattern looks like.

Figures 1-(a) and (b) depict the actual and simulated electricity consumption patterns at each hour index t =
1, . . . , 480 and every 24 hours from 1 a.m. to midnight each day, respectively. Although the simulated electricity
consumption pattern η(xt; θ̂) mimics the actual pattern y(xt) relatively well, some discrepancies are still observed
between the two patterns. To examine discrepancies more specifically, we calculate residuals and plot them at each
t. Let R(xt) denote the residual as R(xt) = y(xt) − η(xt; θ̂) at time t. Figure 2-(a) clearly displays a cyclic residual
pattern from t = 1 to 480. The residuals at a 24-hour interval, which are shown in Figure 2-(b), present the “positive-
negative-positive” pattern with the “decrease-increase-slightly decrease-increase” behavior from 1 a.m. to midnight.
In general, the residual R(xt) tends to be positive, i.e., y(xt) > η(xt; θ̂), during 1 a.m. to 6 a.m. and 6 p.m. to midnight,
as depicted in the blue box plots in Figure 2-(c), indicating that the BEM underestimates actual electricity demands.
On the contrary, it tends to overestimate actual electricity demands from 7 a.m. to 5 p.m. as shown in the red box
plots in Figure 2-(c). From the observations, it becomes evident that certain daily patterns persist over time. It shows
that there is a systematic bias inherent in the BEM simulator, implying that E[y(xt)] , η(xt; θ∗) for some t.

(a) Electricity consumption against hour index. (b) Electricity consumption against every 24 hours.

Figure 1: Comparison between the actual electricity consumption and BEM simulation outputs.

Furthermore, the autocorrelation functions (ACFs) of the residuals in Figure 3 confirm that severe temporal cor-
relation exists within the residual time series {R(xt)}Tt=1. Note that the ACF values that fall beyond the two horizontal
dotted boundaries indicate correlated residuals. In Figure 3, we observe several ACF values beyond the bound-
aries, implying that the residuals are correlated with one another. Thus, the “independent” assumption in the linkage
model (1), which is one of the core assumptions about the errors in ϵt

iid
∼ N(0, σ2), is violated.

Accordingly, since ϵt’s are not independent, the problem formulation in (2) has limitations. It implies that its
optimizer θ̂ is no longer the ML estimator in a statistical sense, thus one cannot use the asymptotic properties of the
ML estimator (see Section 3.4) when quantifying uncertainties for the calibrated parameters θ̂. To address these limi-
tations, a bias-corrected calibration approach that adjusts the systematic discrepancy is needed. We will subsequently
discuss the bias-correction procedure in more detail in the next section.
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(a) Residual against hour index. (b) Residual against every 24 hours.

(c) Box plots of residuals for each hour. The blue (resp., red) box plots indicate the residual distribu-
tions where the BEM underestimates (resp., overestimates) actual energy demands.

Figure 2: Residual plots against hour index.

Figure 3: ACFs of the residuals.

3. Methodology: Bias-Corrected Iteratively Reweighted Least Squares Method

This section formulates the BEM calibration problem that explicitly models the bias. We also introduce hetero-
geneous weights into a loss function to mitigate heteroskedasticity. Specifically, Section 3.1 analyzes the bias pattern
present in the BEM and discusses how to capture it using a time-series model. Section 3.2 examines heteroskedasticity
in the electricity loads and formulates weighted least squares using the heterogeneous weights. Then we propose a
new algorithm for the iterative refinement of weights, employing the IRLS method in Section 3.3. In Section 3.4, we
show how to construct confidence intervals for the calibrated parameters. Section 3.5 discusses potential extensions
to both bias correction and heterogeneous variance reduction approaches.
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3.1. Debiasing the BEM outputs
Suppose δ(xt) denotes a systematic discrepancy between y(xt) and η(xt; θ∗) for all t. We consider the extended form

of linear linkage model that incorporates δ(xt) into the previously discussed linkage model (1) as follows (Kennedy
and O’Hagan 2001):

y(xt) = η(xt; θ∗) + δ(xt) + ϵt, ∀t = 1, . . . ,T, (3)

where ϵt
iid
∼ N(0, σ2) holds. Later, we will see that the error assumption regarding the identical distribution (or constant

variance σ2) does not hold in the BEM calibration. Instead, ϵt
ind
∼ N(0, σ2

t ) is a more valid assumption, where “ind”
means “independently distributed.” We will address how to characterize the varying variance σ2

t in Section 3.2.
When field observations and computer model outputs are scarce, Bayesian calibration (Kennedy and O’Hagan

2001) suggests modeling η(xt; θ∗) and δ(xt) using surrogates, typically Gaussian processes (GPs), at the pre-designed
inputs xt and θ. It places a prior distribution on each parameter and explores the posteriors using Markov chain
Monte Carlo (MCMC). The clear benefit of employing this Bayesian approach is to offer uncertainty quantification
capabilities in the Bayesian inference framework. However, its application is usually restricted to a small amount of
data with low-dimensional parameters due to the MCMC procedure’s heavy computational overhead, as discussed in
Section 1. It has been shown that with a large-size dataset, a frequentist approach is more useful (Liu et al. 2021,
Jeong et al. 2023). However, to the best of our knowledge, the frequentist approach does not take the bias into account
in the formulation (3).

In this study, our goal is to make η(xt; θ∗) + δ(xt) resemble y(xt) with the judiciously modeled bias term δ(xt), so
that it accurately represents the electricity demands, along with improved uncertainty quantification capabilities. We
now introduce a new modeling approach to represent the biases {δ(xt)}Tt=1 using the time-series residuals {R(xt)}Tt=1,
in order to capture the daily cyclic (or periodic) pattern and address the temporal correlation, through the following
equation.

R(xt) = δ(xt) + ϵt, ∀t = 1, . . . ,T, (4)

where ϵt
iid
∼ N(0, σ2) or ϵt

ind
∼ N(0, σ2

t ).
In general, there are a few major modeling approaches that can be considered for a time series: parametric, semi-

parametric, and nonparametric approaches. The family of parametric models includes the usual time-series models
such as autoregressive integrated moving average (ARIMA) (Shumway and Stoffer 2017), whereas the semiparametric
and nonparametric approaches contain a relatively wide range of models such as GPs (Rasmussen and Williams 2006),
splines (Hastie et al. 2009, Lee et al. 2013), neural networks including long short-term memory networks (Hochreiter
and Schmidhuber 1997), etc. In this study, we utilize the parametric approach because the pattern we wish to capture
is relatively consistent over time, and thus, this type of model can be easily generalized to new data that exhibit a
similar pattern to the training data.

Among the family of ARIMA models, we employ the multiplicative seasonal autoregressive integrated moving
average (SARIMA) model of a period of 24, denoted by ARIMA(p, d, q)× (P,D,Q)24, since the time series {R(xt)}Tt=1
exhibit daily periodicity and nonstationarity, e.g., the mean value function µt of the residuals is not constant and
depends on time t, as previously shown in Figure 2. Here, the model parameters p, d, and q are non-negative integers,
with p being the order (i.e., number of time lags) of the autoregressive (AR) model, d being the degree of differencing,
and q being the order of the moving average (MA) model. The uppercase letters P, D, and Q follow a similar analogy
with respect to the seasonal components. Then ARIMA(p, d, q) × (P,D,Q)24 is expressed by

Φ(B24)ϕ(B)∇D
24∇

dRt = α + Ψ(B24)ψ(B)ϵt, ∀t = 1, . . . ,T, (5)

where α is a scalar and Rt := R(xt). Here, ϕ(B) and ψ(B) are, respectively, the ordinary AR and MA operators of order
p and q, defined by

ϕ(B) = 1 − ϕ1B − ϕ2B2 − · · · − ϕpBp,

ψ(B) = 1 + ψ1B + ψ2B2 + · · · + ψqBq,
(6)

and Φ(B24) and Ψ(B24) are the seasonal AR and MA operators of order P and Q, described by

Φ(B24) = 1 − Φ1B24 − Φ2B48 − · · · − ΦPB24P,

Ψ(B24) = 1 + Ψ1B24 + Ψ2B48 + · · · + ΨQB24Q,
(7)
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respectively. Additionally, ∇d = (1 − B)d and ∇D
24 = (1 − B24)D are the ordinary and seasonal difference operators,

respectively, where B denotes the backshift operator exemplified by BRt = Rt−1.
The combination of the model parameters (p, d, q) and (P,D,Q) can be determined using the information criteria,

such as AIC (Akaike 1974) and BIC (Schwarz 1978). We can find the model order that provides the lowest AIC or
BIC criterion among the fitted SARIMA models. Both AIC and BIC suggest assessing the goodness of fit for the
time-series model by balancing the fitting error with the model complexity represented by the number of parameters
in the model. The distinction between the two criteria lies in the extent to which they penalize model complexity.
Specifically, AIC is less stringent in penalizing model complexity, often leading to the selection of a larger-order
model compared to BIC (Shumway and Stoffer 2017). That is, AIC may be preferred when aiming for a more
flexible model and when there is a belief that a more complex model could capture important patterns in the data,
while BIC generally tends to favor more parsimonious models. There is some debate surrounding the comparative
advantages of these two criteria, yet both AIC and BIC have been widely employed in the literature without specific
preference (Faraway 2014). In our implementation with 10 experiments (Note: Section 4 will discuss implementation
settings in more detail), the same SARIMA model is selected by both AIC and BIC in five out of ten training sets.
The remaining five scenarios exhibit minimal discrepancies, with a maximum of one model degree. For example, BIC
selects ARIMA(1, 0, 0) × (0, 1, 1)24 in some experiments, when AIC favors ARIMA(1, 0, 1) × (0, 1, 1)24. Even though
we use AIC for model selection, one can also employ BIC when seeking to select a more parsimonious model.

One could identify the degrees of difference operators that provide a relatively stationary series, followed by
finding the appropriate orders for AR and MA components to fit the resulting residual series. Thus, the bias model for
δ(xt) will eventually be δ(xt; β̂) = R̂(xt; β̂) by explicitly specifying the estimated model parameters β̂ = (α̂, ϕ̂, ψ̂, Φ̂, Ψ̂),
where ϕ̂ = (ϕ̂1, . . . , ϕ̂p), ψ̂ = (ψ̂1, . . . , ψ̂q), Φ̂ = (Φ̂1, . . . , Φ̂P), and Ψ̂ = (Ψ̂1, . . . , Ψ̂Q). In this example of our case study,
we select the ARIMA(1, 0, 0) × (1, 0, 1)24 model for {R(xt)}Tt=1, because (p, d, q)=(1, 0, 0) and (P,D,Q)=(1, 0, 1) give
the lowest AIC value among the different SARIMA models. With α = 0, ϕ1 = ϕ, Φ1 = Φ, and ψ1 = ψ, the time-series
model for {R(xt)}Tt=1 becomes

(1 − ΦB24)(1 − ϕB)Rt = (1 + ΨB24)ϵt, (8)

or equivalently, in difference equation form,

Rt = ϕRt−1 + ΦRt−24 − ϕΦRt−25 + ϵt + Ψϵt−24. (9)

Hence, the resulting bias model for δ(xt) becomes δ(xt; β̂) = R̂(xt; β̂) with β̂ = (ϕ̂, Φ̂, Ψ̂).
With the observed bias pattern in the BEM simulator, which is captured by δ(xt), we consider the following new

loss function to calibrate the BEM parameters θ and, at the same time, estimate β.

min
(θ,β)∈Θ×Ω

1
T

T∑
t=1

(y(xt) − η(xt; θ) − δ(xt;β))2. (10)

Figure 4 shows the ACFs with this new formulation. The temporal correlation is significantly reduced by the
bias-correction procedure, and model residuals (see the definition in Section 3.2) appear to be uncorrelated because
the values of ACFs are within the dotted boundaries in Figure 4.

3.2. Handling Heteroskedasticity

Let us call r(xt) = y(xt)−η(xt; θ̂)−δ(xt; β̂) as the model residual (recall that we denote R(xt) = y(xt)−η(xt; θ̂) as the
residual to differentiate with the model residual). While the new loss function in (10) helps debias the BEM outputs
and address the temporal correlation, Figure 5 (or Figure 6) still indicates that the model residual (or squared model
residual) exhibits the heterogeneous variance over time t. In particular, the box plots in Figure 5-(c) and Figure 6-(c)
describe the large variance of both model and squared model residuals at 2 to 5 p.m., 7 to 8 p.m., and 10 p.m., indicated
by the wide interquartile ranges of the red box plots. That is, the model residual generally shows a large variance from
2 p.m. to 10 p.m., when occupants’ behavior is typically stochastic (De Wilde 2014, Kim et al. 2017). It implies
that the assumption of the constant error variance in ϵt

iid
∼ N(0, σ2) in (3) is violated. More specifically, Var(ϵt) is not

constant, i.e., Var(ϵt) , σ2. In other words, the model residual time series {r(xt)}Tt=1 shows heteroskedasticity over
time t so they are not identically distributed.
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Figure 4: ACFs of the model residuals r(xt) = y(xt) − η(xt; θ̂) − δ(xt; β̂).

(a) Model residual against hour index. (b) Model residual against every 24 hours.

(c) Box plots of model residuals for each hour. The red box plots depict the distributions of the
model residuals that show large variances.

Figure 5: Plots of model residual r(xt) with r(xt) = y(xt) − η(xt; θ̂) − δ(xt; β̂) against hour index.

Therefore, we can conclude that ϵt’s independently follow a normal distribution with mean 0 and variance σ2
t ,

meaning that variances vary over time t, denoted by ϵt
ind
∼ N(0, σ2

t ). It should be noted that when the variance
shows heteroskedasticity, the estimates θ̂ as a solution to (10) are no longer ML estimates and thus no longer enjoy
ML properties, such as asymptotic normality. We will discuss how to address the heteroskedasticity issue in the
subsequent discussion.
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(a) Squared model residual against hour index. (b) Squared model residual against every 24 hours.

(c) Box plots of squared model residuals for each hour. The red box plots depict the distributions of
the squared model residuals that show large variances.

Figure 6: Plots of squared model residual {r(xt)}2 with r(xt) = y(xt) − η(xt; θ̂) − δ(xt; β̂) against hour index.

3.2.1. Mitigating Heteroskedasticity with Weights

With a heterogeneous random error ϵt
ind
∼ N(0, σ2

t ), where σ2
t varies over time t, the regression model (3) can be

extended as
y(xt)

ind
∼ N

(
η(xt; θ) + δ(xt;β), σ2

t

)
. (11)

Since y(xt) independently follows the normal distribution for t = 1, . . . ,T , the likelihood function is as follows:

L(θ,β|y(x1:T )) =
T∏

t=1

1√
2πσ2

t

exp
[
−

(y(xt) − η(xt; θ) − δ(xt;β))2

2σ2
t

]
. (12)

Let us take the logarithm on both side in (12). Then we have the following log-likelihood function.

ℓ(θ,β|y(x1:T )) = log


T∏

t=1

1√
2πσ2

t

exp
[
−

(y(xt) − η(xt; θ) − δ(xt;β))2

2σ2
t

]
= log

 T∏
t=1

(2π)−
1
2 (σ2

t )−
1
2 exp

[
−

(y(xt) − η(xt; θ) − δ(xt;β))2

2σ2
t

]
= −

T
2

log 2π −
1
2

T∑
t=1

logσ2
t −

1
2

T∑
t=1

(y(xt) − η(xt; θ) − δ(xt;β))2

σ2
t

.

(13)

Assuming that σ2
t is known, the first two terms of the last equation in (13) are constant. Thus, maximizing the

function (13) with respect to θ and β is equivalent to minimizing the last term in (13), leading to minimizing the
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following WLS loss function.

min
(θ,β)∈Θ×Ω

F(θ,β) :=
1
T

T∑
t=1

wt(y(xt) − η(xt; θ) − δ(xt;β))2, (14)

where wt = 1/σ2
t . One can refer to Casella and Berger (2002), Kutner et al. (2005), and Faraway (2014) for more

details. By solving this WLS, we can get the estimates θ̂ as calibrated parameter values.
The WLS loss function in (14) has important implications when heteroskedasticity is observed, as in Figures 6-(b)

and (c). The WLS gives different degrees of importance, or weights, to each data point. This is achieved by putting
bigger weights when the variance of the model residuals is small, that is, when the uncertainty is small, because the
points are close to the true mean. On the contrary, the WLS gives smaller weights when the variance is large since the
points could largely deviate from the mean.

The challenge is that the true variance σ2
t is unknown in practice. Therefore, we need to estimate σ2

t , which we
will discuss further in the next section within the context of the BEM calibration.

3.2.2. Estimating Weights
With the model residual r(xt) = y(xt) − η(xt; θ̂) − δ(xt; β̂), let s(xt) denote the squared model residual, i.e., s(xt) =

{r(xt)}2 for all t = 1, . . . ,T . In Figures 6-(b) and (c), {s(xt)}Tt=1 mainly fluctuates from 2 p.m. to 10 p.m. on a daily
basis. Suppose we have D days of training data to calibrate the BEM parameters. To represent the heterogeneous
variance pattern over time in a day, we split the time series of D days of data into D segments by 24 hours from 1
a.m. to midnight. Then we re-organize them with redefined time stamps t′ = 1, . . . , 24 in order. Thus, we have newly
indexed D day-longitudinal data of 24D data points (i.e., 24 hours × D days), denoted by D′ = {(t′, s j(t′))}

t′=24, j=D
t′=1, j=1 .

Note that t′ denotes a specific hour of each day. In this example, we set D = 20.
Utilizing the fact that E[s j(t′)] = σ2

t′ , we can fit a regression model with D′ to estimate the variance function σ2
t .

If the pattern of s j(t′) over t′ = 1, . . . , 24 is relatively simple, a parametric model can be employed, similar to the bias
model discussed in Section 3.1. Otherwise, either a semiparametric model or a nonparametric model can be employed,
especially when the pattern is not simple and thus specifying its functional form a priori is not desirable. Here, we
employ a semiparametric model because of its flexibility. In our implementation, we specifically utilize smoothing
spline (Hastie et al. 2009, Lee et al. 2013). Let φ(t′) denote the function we wish to estimate, i.e., φ(t′) = E[s j(t′)] for
all t′ and j. We can obtain its estimate by solving the following minimization problem.

φ̂ = arg min
φ

24∑
t′=1

D∑
j=1

(s j(t′) − φ(t′))2 + λ

∫
(φ
′′

(u))2du, (15)

where λ is a smoothing parameter. When λ is small, φ̂ will be wiggly, whereas with large λ, φ̂ will be smooth,
approaching to the least squares line fit. We can choose λ using cross-validation or generalized cross-validation (Hastie
et al. 2009).

The solution to (15) can be expressed by an explicit, finite-dimensional, and unique minimizer which is a natural
cubic spline with knots at each t′ for t′ = 1, . . . , 24 as follows:

φ̂(t′) =
24∑

t′=1

Nt′ (t′)γt′ , (16)

where Nt′ (t′) is a 24-dimensional set of basis functions for representing the family of natural splines and γt′ is the
model parameters to be estimated. With this model φ̂(t′), we estimate the variance functionσ2

t by σ̂2
t = (φ̂(t′), . . . , φ̂(t′))

for t = 1, . . . , 24D, by stacking the D time series φ̂(t′) for t′ = 1, . . . , 24 in order. Then the weights wt in (14) can be
replaced by wt = 1/σ̂2

t to obtain the WLS estimate θ̂.

3.3. Parameter Estimation through Iterative Refinement of Weights

As we have seen thus far, the estimate σ̂2
t depends on the initially estimated θ̂ and β̂ with the regression function

η(xt; θ̂) + δ(xt; β̂) for t = 1, . . . ,T . However, considering heteroskedasticity within the WLS formulation can also
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change both estimates θ̂ and β̂, consequently affecting the regression function. This observation suggests an iterative
estimation approach, where we cyclically estimate θ, β, and {σ2

t }
T
t=1, each of which improves the other. Specifically,

at kth iteration, we estimate θk+1 and βk+1. Then, given θk+1 and βk+1, we obtain an estimate for the variance function
{(σk+1

t )2}Tt=1. In the next iteration, we re-estimate θk+2 and βk+2 and get the updated regression function η(xt; θk+2) +
δ(xt;βk+2) by using WLS with the weights inversely proportional to the previously estimated variance, i.e., wk+1

t =

1/(σk+1
t )2 for all t. As this re-estimation generally alters the other estimates, it also affects the residuals.

This iterative procedure continues until the change in either consecutive parameter values or loss function values
becomes sufficiently small, or the available computational budget, e.g., number of simulations, is exhausted. Al-
gorithm 1 summarizes the IRLS procedure for parameter calibration with the bias-correction component. We call
Algorithm 1 the bias-corrected iteratively reweighted least squares method, abbreviated by “deBias-IRLS” hereafter.

Algorithm 1 Bias-Corrected Iteratively Reweighted Least Squares Method for Parameter Calibration (deBias-IRLS)
1: Input: field dataDT = {(xt, y(xt))}Tt=1.
2: Initialize the model bias δ(xt;β1) = 0 and w1

t = 1, ∀t = 1, . . . ,T .
3: for k = 1, 2, . . . ,Kmax do
4: Step 1 (update θ):
5: Given δ(xt;βk), perform BO using Algorithm 2 to obtain the (k + 1)th iterate of parameters θk+1, i.e.,

θk+1 ← arg min
θ∈Θ

F(θ,βk,wk) :=
1
T

T∑
t=1

wk
t (y(xt) − η(xt; θ) − δ(xt;βk))2. (17)

6: Calculate the residual as Rk+1
t := Rk+1(xt) = y(xt) − η(xt; θk+1), ∀t.

7: Step 2 (update β):
8: Given η(xt; θk+1), fit a time-series model δ(·) to {Rk+1

t }
T
t=1 to obtain βk+1, i.e.,

βk+1 ← arg min
β∈Ω

F(θk+1,β,wk) :=
1
T

T∑
t=1

wk
t (y(xt) − η(xt; θk+1) − δ(xt;β))2. (18)

9: Calculate the model residual as rk+1
t := rk+1(xt) = y(xt) − η(xt; θk+1) − δ(xt;βk+1), ∀t.

10: Step 3 (update w):
11: Fit a regression model {(σk+1

t )2}Tt=1 on {(rk+1
t )2}Tt=1 to get

wk+1
t =

1
(σk+1

t )2
, ∀t. (19)

If a termination condition holds, then break the loop.
12: end for
13: Output: calibrated parameters θ̂ = θk, bias model δ(xt; β̂) = δ(xt;βk), and weights ŵt = wk

t with σ̂2
t = (σk

t )2 , ∀t.

In Step 1 of Algorithm 1, we employ BO to get θk+1. Note that BO is completely different method from Bayesian
calibration. For Bayesian calibration, one can refer to Sections 2, 3.1, and 4.1. We choose BO due to its strong
capability to handle a black-box and derivative-free optimization problem, even though other optimization techniques
such as gradient descent and second-order optimization methods can also be used with gradient approximation. We
briefly explain the concept of BO here. One can find more thorough discussions in Frazier (2018) and Shahriari et al.
(2015). BO is a global optimization method to minimize the loss function F(·), which is (i) expensive-to-evaluate,
(ii) black-box, and (iii) derivative-free. BO works well in our setting, because evaluating the value of η(·) in F(·)
by running the BEM is not instantaneous. It takes approximately 1–2 minutes for one year-long BEM simulation.
Moreover, η(·) lacks an explicit expression due to intricate mathematical functions within the simulator, precluding
the availability of first- and second-derivative information in general. Thus, we believe that BO, as an optimization
tool, is an adequate choice for the BEM parameter calibration.

Specifically, BO starts with constructing a GP for F(·) with an initial space-filling design of N0 points (or parameter
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settings in our problem context) such as Latin hypercube design (LHD) (McKay et al. 1979), maximin distance
design (Jones et al. 1998), and maximin LHD (Morris and Mitchell 1995). Given the GP, an acquisition functionA(·),
such as the expected improvement (EI) (Močkus 1975, Jones et al. 1998), upper/lower confidence bounds (Srinivas
et al. 2010), and knowledge gradient (Frazier et al. 2009), is maximized to find the next design point by striking
a balance between exploration and exploitation. Then F(·) is evaluated at this design point, and the GP is updated
accordingly. This procedure continues until the algorithm converges or the maximum number of simulation budgets
Nmax is exhausted. Finally, we get the minimizer θmin that shows the lowest loss function value thus far. In our
implementation, we utilize the maximin LHD for the space-filling design and the EI for the acquisition function. The
EI is defined as EI(θ|D) = E[max(F(θ) − F(θmin), 0)] with all available data D, which can be evaluated using the
closed-form solution (Jones et al. 1998). We implement our procedure with the statistical software R (R Core Team
2021). Among several GP and BO packages available in R, we use DiceKriging and DiceOptim (Roustant et al.
2012) due to their wide popularity. We summarize the BO procedure in Algorithm 2.

Additionally, it is worth noting that since the regression function consists of two terms, η(xt; θ̂) and δ(xt; β̂),
performing many iterations poses the risk of potentially losing some important aspects of the pattern that should be
captured by the computer model η(·). In fact, there is a possibility that this pattern could be assimilated into the bias
term δ(·), which is undesirable, because δ(·) should serve as a supplementary term to correct the possible bias. This
aligns with the identifiability issue between η(xt; θ̂) and δ(xt; β̂), and we admit that our proposed method does not
address this identifiability issue. Devising a procedure that uniquely estimates η(xt; θ̂) and δ(xt; β̂) is beyond the scope
of this study. However, considering the importance of η(·) over δ(·), the practical remedy is to terminate the procedure
within a small number of iterations, e.g., 5 iterations.

Algorithm 2 Bayesian Optimization (BO)
1: Input: N0, Nmax (> N0), and an acquisition functionA(·).
2: Evaluate F(·) at N0 points of θ, generated by a space-filling experimental design. Obtain the initial points DN0 =

{θn, F(θn)}N0
n=1.

3: Place an initial GP prior on F(·) withDN0 by estimating the GP hyperparameters.
4: for n = N0 + 1, . . . ,Nmax do
5: Obtain θn = arg maxθ∈ΘA(θ|Dn−1).
6: Evaluate F(·) at θn and setDn = Dn−1 ∪ (θn, F(θn)).
7: Update the GP posterior with (θn,F(θn)).
8: end for
9: Output: the point with the lowest F(θ), i.e., θmin.

3.4. Uncertainty Quantification

In this section, we discuss how to quantify the uncertainties of the calibrated parameters θ̂ by constructing the
confidence intervals (CIs) for θ (Choe et al. 2018, Pan et al. 2021, Jeong et al. 2023). Let us standardize y(xt) in (11)
to follow the standard normal distribution N(0, 12). Then we have

Zt =
y(xt) − η(xt; θ) − δ(xt;β)

σt

iid
∼ N(0, 12). (20)

The standardization in (20) is useful because the ML estimates θ̂ML with iid observations possess compelling theo-
retical properties, including consistency, asymptotic normality, and efficiency. Consistency tells that θ̂ML converges in
probability to the true parameters θtrue as T → ∞, denoted by θ̂ML

p
−→ θtrue. Further, asymptotic normality indicates

that the estimator
√

T (θ̂ML − θtrue) converges in distribution to a (multivariate) normal distribution N(0, I(θtrue)−1) as

T → ∞, or concisely,
√

T (θ̂ML − θtrue)
d
−→ N(0, I(θtrue)−1), where I(θtrue) is an expected Fisher information matrix.

Also, it is known that θ̂ML is asymptotically efficient, that is, θ̂ML attains its Cramér-Rao lower bound for large samples
T (Casella and Berger 2002).

12



For uncertainty quantification, we use the ML estimator’s asymptotic properties to construct CIs for the parame-
ters (Jeong et al. 2023). Consider the expected Fisher information matrix represented by

I(θtrue) = E
(
∂ℓ1

(
θ|y(x)

)
∂θ

) (
∂ℓ1

(
θ|y(x)

)
∂θ

)⊺ ∣∣∣∣∣∣
θ=θtrue,

(21)

where ℓ1(θ|y(x)) is a log-likelihood function at a single observation y(x) at x. With x = xt the log-likelihood function
ℓ1

(
θ|y(xt)

)
is

ℓ1(θ|y(xt)) = −
1
2

log 2π −
1

2σ2
t

(y(x) − η(xt; θ) − δ(xt;β))2, ∀t = 1, . . . ,T, (22)

assuming that we know {σ2
t }

T
t=1 and β. In practice, we can replace these two quantities with their estimates {σ̂2

t }
T
t=1 and

β̂, respectively.
The expected Fisher information matrix in (21) can be approximated by its empirical counterpart,

I(θ̂ML) ≈
1
T

T∑
t=1

(
∂ℓ1

(
θ|y(xt)

)
∂θ

) (
∂ℓ1

(
θ|y(xt)

)
∂θ

)⊺ ∣∣∣∣∣∣
θ=θ̂ML.

(23)

Here, the black-box nature of η(·) does not allow us to analytically obtain the first-order partial derivatives of ℓ1(θ|y(xt)).
Instead, we use the central finite difference (Abramowitz and Stegun 1972) to numerically attain them as follows:

∂ℓ1(θ|y(xt))
∂θi

≈
ℓ1(θ + hei|y(xt)) − ℓ1(θ − hei|y(xt))

2h
, (24)

for i = 1, . . . , Pθ, where h > 0 is small number such as 10−8 and ei is a Pθ × 1 vector with its ith element being one
and others zero. Then we can obtain the asymptotic 100(1 − α)% Wald CI for each component of θ̂ML as follows:

θ̂ML,i ± z1−α/2
1
√

T

√
I−1
ii (θ̂ML), (25)

for i = 1, . . . , Pθ, where θ̂ML,i is the ith component of θ̂ML, z1−α/2 is a critical value of the standard normal distribution,
and I−1

ii (·) denotes the ith diagonal entry of the inverse of the Fisher information matrix I(·).

3.5. Extension of deBias-IRLS
The proposed approach is flexible in capturing the bias when the bias displays a unique temporal pattern through-

out a day. It is worth noting that the bias pattern does not need to be cyclical in our approach. Let us consider a case
where the building energy model effectively identifies and tracks the daily periodic pattern in energy use and thus, the
residual R(xt) = y(xt)−η(xt; θ̂) does not present a consistent periodic pattern. Nevertheless, the SARIMA model in our
proposed method remains valid even under this condition. This is because the model can be simplified to an ARIMA
model through the elimination of the periodic components with (P,D,Q) = (0, 0, 0) (Note: refer to Section 3.1 for
notations in SARIMA).

Furthermore, the proposed approach can be employed for either heterogeneous or homogeneous variance patterns.
Take, for instance, a scenario where the variance of electricity loads and the associated bias pattern are relatively ho-
mogeneous. Under this condition, the proposed methodology retains its applicability because WLS naturally reduces
to ordinary least squares with identical weight values involved.

Despite its flexibility, our proposed methodology needs careful preliminary analysis. It operates on the presump-
tion that the bias displays a distinct temporal pattern over a day, thereby making a time-series model an appropriate
choice for a bias model. Our analysis presented in Section 2 suggests that both building energy consumption and its
corresponding bias indeed exhibit a daily periodicity over time. However, in cases where bias and variance patterns
show non-periodic patterns or they are related with other factors such as temperature and humidity, the bias model
should be adjusted to account for such factors. In such cases, the bias model may need to comprise other types of para-
metric or nonparametric models beyond the time-series model. Therefore, to identify the most suitable bias model,
a comprehensive exploratory data analysis must be conducted prior to the application of the proposed method. Sim-
ilarly, when the variance patterns interlink with other factors, WLS should leverage appropriate regression functions
for these associated factors.
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4. Case Study: Electrical Energy Demand Prediction with Parameter Calibration

We assess the effectiveness of the proposed calibration approach using hourly electricity consumption data during
the summer months from June to September 2014, obtained from a residential building located in the Mueller neigh-
borhood area of Austin, Texas. To simulate the building’s electricity demand, we first initialize a BEM using BEopt
2.8.0.0 (Christensen et al. 2011), which is an EnergyPlus-based software for evaluating residential building designs,
by taking the specific dimensions and other relevant characteristics of the building. Here, the building is configured
in a rectangular shape with dimensions of 14 × 9 m2 on the first floor and 10 × 9 m2 on the second floor.

To run the EnergyPlus BEM simulator, two input files should be established beforehand: EPW and IDF files. The
EPW file stands for EnergyPlus weather file and typically includes weather information such as dry-bulb temperature,
relative humidity, wind speed and direction, and atmospheric pressure near the building under study. In our analysis,
they are collected from the meteorological station situated nearby the building in Mueller and compiled in the EPW
file with a 1-hour resolution during the corresponding period of energy consumption data. These ambient conditions
serve as observable inputs xt in (3) within the context of calibration.

The IDF file is an abbreviation of the input data file and contains various information that defines the simulation
setting and environment. It typically includes (i) schedules for various building operations that dictate when and how
they operate during the simulation; (ii) building description such as the building’s geometry as well as constructions,
zones, and thermal properties; (iii) HVAC system description; (iv) information about internal loads such as occu-
pancy schedules, lighting, and equipment loads; (v) zone conditions that describe desired thermal comfort conditions,
thermostat setpoints, and HVAC control sequences for each thermal zone; (vi) material and construction properties,
etc. (U.S. Department of Energy 2019). These pieces of information are characterized by simulation parameters.
Users can adjust the parameters and customize the IDF file according to their modeling requirements and goals. The
parameters used in this study are described in Section 4.1. With the two input files, we simulate hourly electricity
consumption for the studied building using EnergyPlus 9.3.0 (U.S. Department of Energy 2019).

4.1. Implementation Settings

In the BEM calibration literature, various studies have targeted specific sets of parameters. For instance, Manfren
et al. (2013) concentrated on parameters related to lighting, control and operation systems, water and air loops, air
handling units, and domestic hot water. Chong et al. (2017) centered their investigation on parameters associated
with walls and materials. Chong and Menberg (2018) incorporated multiple parameters related to HVAC systems,
envelope (such as wall and roof) thermal characteristics, and internal load-related parameters. Kim and Park (2016)
considered multiple parameters for thermal zones, fans and pumps, and plants, to name a few. In this study, we select
four parameters that are considered important in the literature, as summarized in Table 1.

Table 1: List of BEM parameters and their ranges.

Symbol Description Unit Default Min Max

θ1 Solar transmittance – 0.4 0 1
θ2 Gross rated cooling COP W/W 2.95 2 5
θ3 Gross rated cooling capacity W 30517 12000 60000
θ4 Cooling supply air flow rate m3/s 0.77 0 1

To evaluate the predictive performance of the proposed method for simulating the electricity demands of the
building, we consider multiple training and test sets (Lee and Tong 2012, Lü et al. 2015, Granderson et al. 2016).
Specifically, we use actual and simulated hourly electricity consumption data over a period of 21 consecutive days as
a training set, whereas as a testing set, we use the data collected over the following 10 days. We consider 10 different
“training (21 consecutive days)–test (next 7 consecutive days)” pairs of data by shifting the time horizon from June
to September in 2014. For example, the first dataset, Data 1, consists of 504 hourly electricity consumption data
(21 days during Jun 1–Jun 21) for training and 168 hourly data (7 days during Jun 22–Jun 28) for testing. Data 2

also comprises 504 hourly data (Jun 8–Jun 28) for training and 168 hourly data (Jun 29–Jul 5) for testing. Note that
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the time period is shifted by 7 days to account for weekly variations. Similarly, we set eight additional pairs of data,
Data 3 to Data 10. We conduct 10 experiments with these 10 sets of training and test datasets to assess the proposed
method.

For the BO implementation in Step 1 of Algorithm 1 (or Algorithm 2), we set the initial number of design points
N0 as 40 (=10 × Pθ) to ensure the good quality of the initial GP surrogate (Loeppky et al. 2009). The maximum
simulation budget Nmax is set to 300 in Algorithm 2. For the selection of model parameters in the SARIMA model in
Step 2 of Algorithm 1, they will be fixed once the initial selection is made in order to ensure stable performance of the
algorithm. Further, Algorithm 1 terminates when either (i) the Euclidean distance between the consecutive parameter
values is less than 10−2, (ii) the difference between the consecutive loss function values F(·) is less than 10−2, or (iii)
the maximum number of iterations is reached, e.g., we set Kmax = 5 in this case study.

For the purpose of comparing the effectiveness of the proposed approach with alternative methods, we employ
three standard metrics: MSE, CVRMSE, and NMBE. The MSE serves as our primary loss function which we aim to
minimize. We calculate it using the test set for out-of-sample prediction, and it quantifies the discrepancy between the
measured and simulated energy consumption in unseen data.

MS E [kWh2] =
1

Ttest

Ttest∑
t=1

(y(xt) − η(xt; θ̂) − δ(xt; β̂))2, (26)

where Ttest denotes the number of data points in the test set, i.e., Ttest = 168 in this case study.
Next, the CVRMSE (Coefficient of Variation of the Root Mean Squared Error) similarly quantifies the discrepancy

between the two, but it divides the square root of MSE by the averaged measured value y(x) as follows:

CVRMS E [%] =
1

y(x)

√∑Ttest
t=1 (y(xt) − η(xt; θ̂) − δ(xt; β̂))2

Ttest
× 100. (27)

Both the ASHRAE Guideline 14 (ASHRAE 2002, 2014) and the protocol offered by Federal Energy Management
Program (FEMP) (Webster and Bradford 2002, Webster et al. 2014), which describe the measurement and verification
of BEMs, recommend that CVRMSE should not exceed 30% for hourly data to ensure the well-validated BEM.

Finally, the NMBE (Normalized Mean Bias Error) is a normalized form of the mean bias error calculated by the
average discrepancies between measured and simulated data as below:

NMBE [%] =
1

y(x)

∑Ttest
t=1 (y(xt) − η(xt; θ̂) − δ(xt; β̂))

Ttest
× 100. (28)

A positive (negative) NMBE value indicates whether the BEM underestimates (overestimates) the measured energy
consumption values. Typically, this metric is not employed in isolation but rather used as a supplementary criterion in
conjunction with MSE and CVRMSE due to its potential for cancellation effects, i.e., large positive model residuals
can be cancelled by large negative ones. ASHRAE Guideline 14 and the FEMP protocol suggest that NMBE from a
well-calibrated BEM should fall within the range of ±5%.

4.2. Comparison with other alternatives
We compare the performance of deBias-IRLS with other alternatives, including ordinary least squares, Bayesian

calibration, L2 calibration, and two approaches using artificial neural networks.

(a) Ordinary Least Squares (OLS): This method is a straightforward approach that calibrates θ by directly solving
the minimization problem (2) without considering the bias as well as heteroskedasticity. In other words, when
evaluating the OLS method, the bias term δ(·) in the MSE, CVRMSE, and NMBE formula is set to 0 since OLS
does not consider the bias. We employ BO to get parameter estimates θ̂ with OLS.

(b) Bayesian Calibration: It has been a predominant approach in the calibration literature. It is usually built upon
the linear linkage model (3). Unlike OLS, it considers the bias term δ(·), which is usually emulated by a GP.
The BEM output η(xt; θ) is also modeled by using a GP with pre-designed points xt and θ. The parameters θ
along with hyperparameters in a kernel function of the GPs are placed by the prior distributions using domain
knowledge or non-informative priors and estimated by exploring their posteriors using the MCMC procedure.
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(c) L2 Calibration: This calibration method takes two steps to obtain an estimator θ̂L2 for the true parameter θ∗.
Given the inputs and corresponding actual electricity consumption data {(xt, y(xt))}Tt=1, it proceeds by estimating
the true process ζ̂, where y(x) = ζ(x) + ϵ with an observation error ϵ, using kernel ridge regression (Hastie
et al. 2009, Byon et al. 2016) in the reproducing kernel Hilbert space. Then it constructs an emulator η̂(·) for
η(·) by a GP (Santner et al. 2018) using the pre-specified design points of parameters and their BEM outputs
{((xt′ ; θt′ ), η(xt′ ; θt′ ))}T

′

t′=1. Consequently, θ is calibrated by solving the following optimization problem:

θ̂L2 = arg min
θ∈Θ

∥ζ̂(·) − η̂(· ; θ)∥L2 . (29)

(d) Neural Networks I: This approach mimics the inverse model-based calibration framework (Bhatnagar et al.
2022) using artificial neural networks. Unlike the so-called forward model-based calibration approach that maps
θ to η(· ; θ) to find the surrogate η̂(·) in the conventional setting, the inverse model-based approach maps η(· ; θ)
to θ for estimating the relationship g such that θ = g(η(x; θ) + δ(x)) + ε with ε being a Pθ-dimensional vector of
random errors. To train the function g, artificial neural networks are used due to the high degree of nonlinearity
of g.

(e) Neural Networks II: This approach is a variant of L2 calibration, but it estimates the surrogates of ζ(·) and η(·)
using artificial neural networks rather than GPs.

Similar to the proposed method, we use hourly data for implementing all of these alternatives with the exception of
the Bayesian technique. For Bayesian calibration, we employ daily aggregated data due to the extensive computational
time required when using hourly data. Additionally, we utilize two distinct prior specifications for each parameter:
uniform and Gaussian. The prior means for the uniform distributions of the normalized parameters, ranging from 0 to
1, are set to 0.5. For the Gaussian prior distributions, the prior means are set close to the parameter values obtained
by deBias-IRLS, mimicking the case where we have prior knowledge, along with the standard deviation of 0.2. To
explore the posterior distributions, we use the No-U-Turn Sampler (NUTS), a sampling technique based on Hamil-
tonian Monte Carlo, which enhances the convergence of MCMC by efficiently exploring the posterior distributions.
Concerning the MCMC procedure, it is set to run for 4000 iterations with 4 chains. The first half of the samples
is designated as the burn-in period, while the second half is utilized to explore the posteriors. More details about
Bayesian calibration can be found in Kennedy and O’Hagan (2001) and Higdon et al. (2004) in a general setting,
as well as in Chong and Menberg (2018) in the context of the BEM calibration. In this study, we do not conduct
Bayesian calibration using the hourly data, because it takes over 2 days for each training set, and we decide to quit
running the implementation due to its excessive computation time. Instead, when we use the daily aggregated data, it
takes roughly 8–9 hours to complete each experiment. It should be noted that the computation time is also dependent
on the number of MCMC iterations.

4.3. Implementation Results
In this section, we evaluate the effectiveness of the proposed deBias-IRLS method and compare it with other

alternatives in terms of calibration accuracy (or prediction accuracy) and the suitable uncertainty quantification capa-
bility. Table 2 first summarizes the comparison results based on the average values of MSEs, CVRMSEs, and NMBEs
and their standard deviations, using the 10 different test sets. Clearly, deBias-IRLS achieves the lowest MSE and
CVRMSE values compared to other methods on average, indicating the highest prediction accuracy for the building’s
electricity simulation. For more details, Figure 7 presents the comparison of MSEs and CVRMSEs of each method
for 10 test sets.

Furthermore, the CVRMSE value obtained from deBias-IRLS is lower than the threshold of 30%, and the NMBE
value falls within the allowable range of ±5%, both of which satisfy the guidelines from ASHRAE and FEMP. The
results indicate that the BEM is well-calibrated through the proposed bias-correction procedure. Although the absolute
values of NMBE from some alternative methods are slightly smaller than that of deBias-IRLS, it would be due to some
cancellation effects in positive and negative residuals when calculating NMBEs. Also, NMBE is generally used as
a supplementary measure alongside MSE and CVRMSE in the BEM calibration. Therefore, it is advisable to place
greater emphasis on MSE and CVRMSE than NMBE when interpreting the calibration results.

Unlike the deBias-IRLS method, OLS does not consider the systematic bias, which usually occurs in the BEM
application as discussed in Section 2, so it loses its prediction capability. Moreover, the Bayesian approach exhibits
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Table 2: Comparison of calibration accuracy: average MSE, CVRMSE, and NMBE in 10 test sets (Note: the values inside parentheses are standard
deviations).

Method (Prior) MSE [kWh2] CVRMSE [%] NMBE [%]

deBias-IRLS 0.412 (0.208) 28.720 (7.662) -2.464 (14.810)
OLS 0.598 (0.204) 35.410 (8.947) 2.752 (13.998)

Bayesian (uniform) 0.769 (0.353) 40.108 (12.441) -9.033 (19.608)
Bayesian (Guassian) 0.685 (0.299) 37.747 (11.336) -2.142 (19.163)

L2 Calibration 0.697 (0.232) 37.881 (6.214) -1.696 (13.770)
Neural Networks I 0.623 (0.163) 36.148 (6.816) 5.455 (10.054)
Neural Networks II 0.692 (0.270) 37.781 (9.734) 0.877 (16.467)

(a) Test MSE.

(b) Test CVRMSE.

Figure 7: Comparison of calibration accuracy in terms of MSE and CVRMSE for each test set.

worse prediction performance compared to deBias-IRLS and OLS in terms of MSE and CVRMSE. Interestingly,
even when the Gaussian prior is employed with prior means close to the values from the deBias-IRLS, the Bayesian
approach generates higher error measures. One possible reason is that it uses daily data for training due to its exces-
sive computing time with hourly data. Another reason of the low prediction accuracy is that the Bayesian approach
utilizes only the pre-designed points in calibration to build their surrogates, whereas deBias-IRLS adaptively finds the
parameter points by sequentially simulating the energy consumption output within the BO implementation. Addition-
ally, the respective calibration objective is different in that deBias-IRLS directly minimizes the difference between
the actual and simulated electricity consumption along with the bias, whereas the Bayesian calibration maximizes the
likelihood with the surrogates constructed to represent the BEM and/or physical process. Also, L2 calibration and
two benchmarks using neural networks show lower calibration accuracy than deBias-IRLS. This is possibly because
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L2 calibration and two neural networks do not deal with the bias appropriately. Another reason could be that L2
calibration and Neural Network II still construct the surrogates using the pre-designed points.

Another advantage of the deBias-IRLS method is that it provides improved uncertainty quantification capabilities
once the ML estimates θ̂ML are obtained. Recall that putting larger (or smaller) weights on less (or more) varying
periods through the WLS formulation alleviates heteroskedasticity. This formulation enables us to use the asymptotic
properties of the ML estimator and thus to construct the asymptotic CIs for the BEM parameters. In addition to
the aforementioned alternatives, we consider another benchmark that just addresses the systematic bias through bias
modeling, ignoring heteroskedasticity, in order to demonstrate the impact of mitigating heteroskedasticity. We call
this additional benchmark deBias-OLS.

The performance of uncertainty quantification can be evaluated based on the CIs of the estimated parameters (Pan
et al. 2021, Jeong et al. 2023). Table 3 summarizes the comparison results of the half-bandwidth of 95% CIs for each
parameter using each method. Note that CIs stand for confidence intervals for OLS, deBias-IRLS, L2 calibration, and
two methods using neural networks, whereas credible intervals for Bayesian calibration. All the methods except for
Bayesian calibration use the asymptotic properties of the ML to construct the confidence intervals. On the contrary, the
95% credible intervals in Bayesian calibration are derived by the intervals with the 0.025 and 0.075 quantiles of each
posterior distribution. A larger bandwidth indicates a greater uncertainty in estimation. Overall, both deBias-IRLS
and deBias-OLS yield narrower CIs compared to other methods. It implies that the bias correction may assist lower
estimation uncertainties even if its goal is to eliminate any potential bias patterns. When compared to deBias-OLS,
deBias-IRLS provides either narrower or comparable half-bandwidths of CIs, indicating more controlled uncertainty.
Also, deBias-IRLS constructs narrower CIs than OLS, L2 calibration, and Neural Networks I and II. Further, its
standard deviations (see the numbers inside the parentheses) are smaller in general, indicating better robustness.
Finally, it is not straightforward to compare between confidence and credible intervals, but the results suggest that
deBias-IRLS leads to much narrower half-bandwidths than the Bayesian approach.

Table 3: Uncertainty quantification results: average half-bandwidth of the 95% CI for each BEM parameter in 10 test sets (Note: the values inside
parentheses are standard deviations).

Method (Prior) θ1 θ2 θ3 θ4

deBias-IRLS 0.045 (0.071) 0.032 (0.014) 0.015 (0.015) 0.004 (0.004)
deBias-OLS 0.064 (0.047) 0.024 (0.006) 0.040 (0.044) 0.010 (0.021)

OLS 0.016 (0.030) 0.058 (0.015) 0.040 (0.017) 0.004 (0.004)
Bayesian (uniform) 0.459 (0.014) 0.357 (0.138) 0.464 (0.014) 0.418 (0.073)
Bayesian (Guassian) 0.285 (0.045) 0.283 (0.070) 0.337 (0.020) 0.290 (0.047)

L2 Calibration 0.107 (0.171) 0.045 (0.021) 0.062 (0.087) 0.033 (0.061)
Neural Networks I 0.256 (0.158) 0.056 (0.017) 0.121 (0.148) 0.078 (0.093)
Neural Networks II 0.130 (0.232) 0.052 (0.018) 0.020 (0.021) 0.023 (0.047)

5. Conclusion

This study presents a novel bias-corrected parameter calibration approach to effectively calibrate the BEM, while
simultaneously mitigating the heterogeneous variance of the electricity consumption data. This approach enables us
to design a new algorithm that explores the IRLS method in linear regression. Specifically, we analyze the systematic
bias between the actual and simulated electrical energy consumption pattern present in the BEM. We show that this
pattern can be captured by using the time-series model that incorporates seasonal components. Moreover, the variance
of residuals may exhibit heterogeneous patterns, especially the inflated variance in the afternoon. This is often well-
explained by the stochastic and heterogeneous occupant behavior in the residential building (e.g., starting to turn on the
air conditioner, etc.) This heterogeneity may negatively affect prediction and uncertainty quantification capabilities.
To address this heterogeneity, we introduce weights in the loss function. This procedure can be achieved using the
IRLS procedure.

Our implementation results demonstrate that the proposed approach can improve prediction accuracy significantly
in terms of several metrics. In particular, both CVRMSE and NMBE results satisfy the industry guidelines in the BEM
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calibration. Moreover, we demonstrate the improved uncertainty quantification capabilities through the proposed
deBias-IRLS method.

In the future, we aim to broaden the scope of our methodology to encompass more generalized settings. For ex-
ample, we will consider the outputs from multiple channels. Smart meters allow utility providers to collect electricity
consumption data from different channels such as HVAC, lighting, and appliances. Thus, we can calibrate parameters
with multi-output data if such data become available to us. Furthermore, we plan to apply the well-calibrated BEM
for the purpose of control and management in building energy use as part of demand response programs (Jang et al.
2020, Li et al. 2020), as well as renewable generation planning in microgrid operations (Wang et al. 2021).
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