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Abstract—This study considers a maintenance optimization
problem for a large-scale system comprising many homogeneous
units. Each unit degrades by transitioning on predefined health
states, where transition times follow general distributions from
one state to another. We consider a selective maintenance scheme
where one can repair or replace units under specific health states
at each maintenance activity. The system, therefore, does not seem
to have a regenerative nature because some units still remain in
their degraded states after maintenance. This selective nature
challenges the analysis and maintenance decision-making. We
first formulate such a process as a fluid system to characterize
the degradation pattern at the system level. Based on the fluid
model, we devise a condition-based maintenance policy that
triggers a repair action when the weighted sum of the fraction
of units in specific health states hits a predetermined threshold.
Our implementation finds that the fluid system shows periodic
behavior as time goes by; the system becomes asymptotically
regenerative. Hinging upon this observation, we develop an
algorithm to find a threshold triggering a maintenance action
that minimizes the long-run average cost. Numerical experiments
show that the proposed fluid model accurately approximates the
dynamics of system degradation, and the condition-based selec-
tive maintenance scheme is cost-effective against the alternative
periodic maintenance strategy.
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Non-Markovian system, Non-renewal process, Reliability.
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NOTATION
N Number of units
M Number of states
Fi(t) Transition time distribution from state i to i+ 1
fi(t) Density of Fi(t)
hi(t) Hazard function of Fi(t)
F̄i(t) 1− Fi(t)

X(t)
(X1(t), . . . , XM (t))T , status of the system at
time t

Xi(t) Fraction of units in state i at time t
γ Threshold for triggering a maintenance activity

S
Last state where the units are not repaired or
replaced under selective maintenance policy

τn nth hitting time of the threshold

αi
weight of state i in triggering maintenance activ-
ity

P Setup cost per visit
Ci Repair (or replacement) cost of a unit in state i

L
Revenue loss/unit time that a failed unit (state
M ) incurs

X(t, y)
(X1(t, y), . . . , XM (t, y))T , two-parameter status
of the system at time t with staying in states less
than or equal to y amount of time.

Xi(t, y)
Fraction of units staying in state i less than or
equal to y amount of time at time t

xi(t, y) Density of Xi(t, y)
ri(t) Actual flow rate from state i to i+ 1

I. INTRODUCTION

WE study a maintenance optimization problem for a
large-scale system consisting of massive homogeneous

units. Consider a large-scale wind farm with hundreds or
thousands of wind turbines [1]. If the wind turbines have
the same specification and same age, their degradation pattern
would follow the same process, even though there would be
unit-to-unit differences due to the stochastic nature of degra-
dation. Another example that exhibits similar properties is a
solar park with a large number of photovoltaic panels. These
energy systems contain a large number of small generators,
unlike the traditional power plants such as nuclear, thermal and
hydroelectric power plants that comprise a few big generators.
For the system consisting of many units, system operators may
not be able to repair all units at once in a single trip. Instead,
they would prefer to choose units in certain degraded states
(e.g. alarm or failure states) and conduct repair operations
for those selected units only, while doing nothing for the
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rest of units and allowing to continuously operate until the
next maintenance action. Such maintenance type is called
selective maintenance [2]. Selective maintenance is a realistic
operational type adopted in many real-world applications [3]–
[6] where maintenance resources, such as maintenance crew,
equipment and cost, are limited.

There are several challenges in devising a cost-effective
selective maintenance strategy for these systems. First, in
several studies [7], [8], a Markovian degradation process
has been assumed. However, in many practical systems, the
lifetime distributions of units could be non-Markovian. For
example, studies in [9]–[11] employ the Weibull distribution.
The degradation processes based on non-exponential distribu-
tions exhibit a non-Markovian behavior, which challenges in
tracking the system-level dynamics of the system. Here, the
system-level dynamics implies the progression of degradation
states of entire units in the system, e.g., how many units are
in normal, alert, alarm and failure states at any time point and
how the numbers evolve over time. The selective maintenance
strategy for large-scale systems should be devised, based on
the accurate estimation of the system dynamics considering
the system as a whole.

Next, for these large-scale systems, we easily face a scala-
bility issue. Many prior studies on maintenance optimization
consider a single unit or a small number of units [12]–[14], and
their approaches may not be scalable enough to address several
hundreds or thousands of units due to the combinatorial nature
of problems. To avoid the combinatorial approach, we need
to characterize the system-level dynamics mentioned above,
however, the selective maintenance strategy adds another layer
of challenge. In the simultaneous maintenance policies where
all units are repaired together and the system becomes as
good as new after each maintenance operation, the system
dynamics follow a regenerative process [15]–[17], however,
with selective maintenance policy one should not simply
assume the regenerative process.

To address the challenges previously mentioned and to
overcome the limitations of prior research, this paper offers
the following contributions:

• We introduce a new fluid model to capture the dynamics
of systems comprised of hundreds, thousands, or even
more units, implicitly leveraging the law of large num-
bers. This model describes the transition of units into
progressively degraded states. The results from the fluid
model give a collective view of the system’s health, spec-
ifying the number of units in each degradation state and
forecasting the system’s future trajectory. Consequently,
the fluid model can serve as a overarching solution
for large-scale systems, complementing the multi-unit
(or multi-component) maintenance optimization methods
present in existing literature.

• The proposed fluid model is versatile, designed to ac-
commodate any transition distributions with density by
directly using the distribution function. This indicates
that our model can analyze non-Markovian system dy-
namics without requiring approximations of distribution
functions.

• We present a threshold-type selective condition-based
maintenance (CBM) scheduling problem and outline a
solution method. Numerical experiments show that the
initial vector of the system state right after each mainte-
nance operation converges to a constant vector, leading
the fluid system to become asymptotically regenerative at
maintenance intervals. This regenerative nature is proven
for a three-state continuous-time Markov chain scenario.
We believe such asymptotic regenerative nature holds for
other general non-Markovian systems. Based on this con-
jecture, we provide a cost-effective selective maintenance
strategy that minimizes the long-run average cost.

The remainder of the paper is organized as follows. Sec-
tion II reviews previous related studies. Section III describes
our problem settings and formulates the optimization problem.
Section IV introduces the fluid model and shows the accuracy
of the model approximating the system dynamics. Section V
proposes an algorithm to solve the optimization problem using
the fluid model. Section VI conducts numerical studies, and
Section VII wraps up this study and discusses future works.

II. LITERATURE REVIEW

This section provides literature reviews on maintenance
optimization problems. The scope of the maintenance opti-
mization is quite broad. As the system we consider in this
paper is different from those studied in the previous studies
that handled single-unit systems or multi-component systems
(e.g., k-out-of-n systems), we omit reviews of those studies.
Instead we focus on studies closely relevant to the proposed
approach.

Petchrompo and Parlikad [18] provided a comprehensive
literature review on asset management of multi-asset systems.
They distinguished multi-component systems with multi-asset
systems, while both are called multi-unit systems in the
literature. Several studies on multi-component systems account
for three dependency types: economic, stochastic and struc-
tural dependence [19]. Olde Keizer et al. [20] further added
resource dependence to these categories for multi-component
systems. Salari and Makis [14] proposed two condition-based
maintenance policies for a multi-unit system (identical units)
considering production and demand rates when determining
control limits that trigger maintenance operations. They for-
mulated the problem using a semi-Markov decision process
and optimized the long-run average cost. In their study the
number of states of the Markov process is O(N2), where N
is the number of units. Therefore, their approach encounters
scalability issues as the number of units in the system gets
larger.

Castanier et al. [21] used the semi-regenerative process
property to calculate the long-run average maintenance cost
of two-unit systems. Zhang and Zeng [22] used the semi-
regenerative process property to calculate the long-run average
maintenance cost of multi-unit systems. However, these studies
considered only two- or three-unit systems so they are not
applicable to large-scale systems.

Cao et al. [2] carried out a literature review specifically
focusing on selective maintenance. They introduced three
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aspects for selective maintenance decision-making: system,
maintenance, and mission profile characteristics. System char-
acteristics include system structure (e.g., series, parallel), life-
time distributions, states, and dependence. Maintenance char-
acteristics represent maintenance degree (perfect, imperfect,
and minimal) and resource consumption (negligible, constant,
and random). Mission profile characteristics determine mis-
sion objectives, planning horizon, available resources, mission
types, and working conditions. Maaroufi et al. [5] considered
a system conducting multiple missions where each mission
requires a minimum level of reliability. Their goal is to select
components to be renewed after each mission with minimum
cost.

Selective maintenance strategy has been studied in mission-
critical applications. Jiang and Liu [3] proposed a selective
maintenance strategy for systems that perform multiple mis-
sions. They considered three types of maintenance actions:
perfect maintenance, minimal repair (MR), and imperfect
maintenance (IM). They assumed that the IM action reduces
the physical age of the component. They constructed a max-
min optimization problem to allocate a maintenance budget
so that the minimum of the probabilities of the successful
missions can be maximized. Due to the complexity of the prob-
lem, they used a simulated annealing-based genetic algorithm
to solve the problem. Jiang and Liu [23] considered the un-
certainty arising from imperfect observations and formulated
a multi-objective optimization problem that maximizes the
expectation while at the same time, minimizing the variance
of the probability of successful missions. Liu et al. [24]
considered a situation where inspections are inaccurate and
formulated a finite-horizon Mixed Observability Markov De-
cision Process (MOMDP) model to address this. Ghorbani et
al. [25] assumed that the system undergoes uncertain condition
scenarios and adopted a stochastic programming approach to
tackle them. Maillart et al. [8] consider a corrective selective
maintenance model in a series-parallel system to identify
which components to replace in the finitely long periods
of time. Ahadi and Sullivan [26] developed an approximate
dynamic programming (ADP) algorithm to address the scal-
ability issue of the Markov decision process in the selective
maintenance problem for series-parallel systems. Xu et al. [27]
proposed a hybrid algorithm, combining the deep Q-network
and the discrete differential evolution algorithm, to overcome
the same scalability challenge of MDP.

Similarly, Liu et al. [4] developed a selective maintenance
model for multi-state systems to maximize the mission-
completion probability. They considered the randomness of
break duration which imposes an computational burden due
to multiple integration. To alleviate the computational com-
plexity, they used the saddle point approximation and used
the ant colony algorithm to obtain the solution. To validate
their approach they used a coal transportation system as a
numerical experiment. Liu et al. [28] addressed a finite-horizon
selective maintenance problem for multi-state systems con-
sidering imperfect maintenance. They formulated the problem
using a discrete-time finite-horizon Markov decision process.
For a solution approach, they proposed a deep reinforcement
learning method customized for their problem. Hesabi et al.

[29] employed both deep learning and mathematical program-
ming to minimize the total selective maintenance cost under
intermission break time constraints.

Yang et al. [6] suggested a heuristic sequential game ap-
proach for a fleet-level selective maintenance problem with a
phased mission scheme. They considered a fleet consisting
of many pieces of equipment that is further composed of
subsystems. The fleet goes through a phased mission with
short breaks between phases. Due to difficulty in developing a
unified game framework for the selective maintenance of such
systems, they proposed a heuristic game approach with state
backtracking. They conducted an aircraft fleet case study to
validated their approach.

Khatab et al. [30] formulated a joint non-linear program-
ming optimization problem for the integration of selective
maintenance and repair channel assignment when multiple
repair channels are available. Yin et al. [31] considered het-
erogeneous repair channels and addressed the selective main-
tenance problem using the ant colony metaheuristic algorithm.
Ma et al. [32] also took a metaheuristic approach, specifically
the cooperative co-evolutionary genetic algorithm, to solve a
complicated optimization problem. Chaabane et al. [33] also
integrated selective maintenance and repair-person assignment
for multiple missions into an unified framework. Due to the
combinatorial nature of the problem, they developed a heuristic
algorithm based on the genetic algorithm.

Most studies, including aforementioned ones, limited their
analysis to specific lifetime distributions such as exponential,
Gamma, and Weibull distributions and handle a small number
of units. Ko and Byon [10] proposed a method to keep track
of the dynamics of the system’s degradataion state when each
unit degrades following a general lifetime distribution. They
approximated general lifetime distributions with phase-type
distributions using the denseness of phase-type distributions.
Ko and Byon [15] further devised a condition-based optimiza-
tion method, building on the results in [10]. Their work was
one of the first attempts to obtaining an optimal maintenance
scheduling for large-scale systems. However, there are a few
limitations that hinder their approach applicable in practice.
First, the accuracy of the phase-type approximation depends
on the number of phases: in general, the more phases the
more accurate. However, using more than 10 phases lead to
very complicated equations which are not traceable. Most
importantly, their maintenance policy is limited to simulta-
neous repair for all units where all units become as good
as new after a maintenance activity. Such policy would not
be feasible for large-size systems when repairing each unit
requires substantial resources.

III. PROBLEM DESCRIPTION

We consider a system consisting of N homogeneous units
and each unit deteriorates independently following the same
degradation process. We assume each unit’s degradation status
can be classified into M states, e.g., normal, alert, alarm and
failure states. We allow the transition time from state i to
the next state i + 1 to obey any arbitrary distribution, e.g.,
Exponential, Weibull, Lognormal, Gamma distribution, etc.,
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Fig. 1. Degradation process of each unit in [15]

with a known cumulative distribution function (cdf) denoted
by Fi(·). Since transitions are unidirectional, states with higher
numbers represent more deteriorated health conditions. When
a unit reaches the last state, i.e. state M , can be regarded
as failure. Figure 1 describes the degradation process of each
unit.

One of the effective approaches to characterize the system’s
health state is to investigate the number of units, or proportion
of units, in each degradation state and its progression [10].
Specifically, let X(t) = (X1(t), · · · , XM (t))T denote the
status of the system at time t where Xi(t) is the fraction
of units in state i at time t,

∑M
i=1 Xi(t) = 1, ∀t ≥ 0.

Initially at time t = 0, the system starts with a brand new
status, i.e., X(0) = (1, 0, · · · , 0). Since we allow the transition
times between states to follow any distributions, the stochastic
degradation process of each unit is non-Markovian and so is
the system.

The units in the system degrade over time by transitioning
from one state to the next. When a unit reaches state the last
(failure) state, M , it incurs a revenue loss L per unit time. The
system operator who continuously monitors the system decides
to visit the system site and perform maintenance operations
based on the fraction of units in state S + 1 through M ,
e.g., alarm and failure states. When a maintenance activity is
triggered, the maintenance engineers only repair (or replace)
units in state S + 1 through M and leave other units in
state 1 through S untouched. Once a maintenance operation
is completed, the units in state S + 1 through M become
as good as new and the rest of the units stay in their states.
The duration for completing a maintenance activity is assumed
to be negligible, compared to the maintenance interval [15].
Maintenance activities incur a setup cost P per visit and a
repair (or replacement) cost Ci for each unit in state i.

As we consider the selective maintenance to repair de-
graded units only, an effective strategy would be to trigger
maintenance when the proportion of units S + 1 through M
becomes above a given threshold. In particular, considering
the significance of each state, we use a weighted fraction of
degraded units as a measure for how strongly it is desired
to execute maintenance and trigger maintenance when it hits
(or exceeds) a threshold, denoted by γ, for 0 < γ ≤ 1. That
is, maintenance is prompted when the system state satisfies∑M

s=S+1 αsXs(t) ≥ γ. Here, αi is the weight for state i,
satisfying αS+1 ≤ αS+2 ≤ · · · ≤ αM .

We can consider S and αi as hyperparameters that are
dependent on the context. They are influenced by factors
beyond just cost. The value of S can be chosen based on the
imminence of states and the repair capacity during a single
trip. Meanwhile, the values of αi signify the significance of
each state. One might choose these values in proportion to
the repair cost of each state, factoring in the availability and

delivery time of parts.
Nevertheless, it is possible to optimize both S and αi in

terms of cost. A detailed discussion on this optimization can
be found in Section VI-E.

Let τn denote the nth hitting time of the threshold as follows:

τn = inf
{
t > τn−1 :

M∑
s=S+1

αsXs(t) ≥ γ},

where τ0 = 0.
The objective of the selective maintenance optimization

problem in this study is to find a threshold that minimizes
the long-run average maintenance cost as

minimize
γ

f0(γ) = lim
t→∞

1

t

ntP +

nt∑
j=1

M∑
i=S+1

CiNXi(τj)

+

nt∑
j=1

∫ τj

τj−1

LNXM (t)dt

 , (1)

where nt = sup{n : τn ≤ t}.
The optimization problem in (1) is not directly solvable

because we do not have closed form expressions of X(t) and
τn. Furthermore, optimization on an infinite horizon is not
trivial unless the problem has a special structure. To tackle
this issue, we take an approach that treats the transitions of
units as flows of fluid when the number of units in the system
is sufficiently large [10]. This perspective allows us to keep
track of the time-varying fraction of units in each state.

Studies on queueing theory have developed useful mathe-
matical tools to modeling and analysis of large-scale systems.
Especially, exploring asymptotic behavior via the law of large
numbers (fluid model) and the central limit theorem (diffusion
model) provides tractable ways to analyze queueing systems
that show non-Markovian and time-varying behavior. Details
of limit theorems on queueing systems are summarized in
[34], [35]. In particular, the fluid model is often used to
approximate the mean behavior of the system. Whitt [36]
developed fluid models for non-Markovian multiserver queues
with abandonment introducing two-parameter deterministic
limit processes. We derive a fluid model with two-parameter
processes for describing the degradation process with non-
Markovian transition times between degradation states in
Section IV. Then Section V proposes a solution method for
solving the problem in (1).

IV. SYSTEM STATE CHARACTERIZATION WITH FLUID
MODEL

We first explain the basic fluid model that describes the
degradation process without maintenance activities in Sec-
tion IV-A. Then Section IV-B explains the fluid model with
selective maintenance.

A. Basic model

To describe the degradation process of a non-Markovian
system, we should characterize how the system’s health state
will evolve, as well as the current health state. Therefore, it
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is not sufficient to keep the fraction of units (or the number
of units) in each state alone. We formulate the system-level
degradation process using a two-parameter fluid process [36],
[37]. Define X(t, y) = (X1(t, y), . . . , XM (t, y))T be a vector,
where Xi(t, y) denotes the fluid fraction of units in state i that
has been in state i less than, or equal to, y amount of time.
Then, we have

X(t) = lim
y→∞

X(t, y).

We assume that Xi(t, y) has a smooth density xi(t, y) with
respect to y such that

Xi(t, y) =

∫ y

0

xi(t, u)du.

Suppose that the transition distribution Fi(·) has a pdf fi(·)
and a hazard rate hi(·), and we define F̄i(·) = 1− Fi(·). The
actual rate of fluid from state i to i+1, denoted by ri(t), can
be obtained by

ri(t) =

∫ t

0

xi(t, y)hi(y)dy.

Then we have the following fluid model for state 1 of the
system that starts with brand new units at time 0:

X1(t) = X1(0)F̄1(t), (2)

r1(t) = −
d

dt
X1(t) = X1(0)f1(t). (3)

Here, state 1 does not have in-flow from other states, so X1(t)
can be easily obtained by multiplying X1(0) and F̄1(t) as
in (2). The rate of out-flow from state 1 in (3) is nothing but
the negative derivative of X1(t) with respect to t.

For 2 ≤ i ≤ M − 1, state i has in-flow from state i − 1.
Therefore, state i has a different form of fluid model from
state 1:

xi(t, y) = F̄i(y)ri−1(t− y), (4)

ri(t) =

∫ t

0

xi(t, y)hi(y)dy, (5)

Xi(t) =

∫ ∞

0

F̄i(y)ri−1(t− y)dy =

∫ t

0

F̄i(y)ri−1(t− y)dy.

(6)

Equation (4) represents the density of Xi(t, y), obtained by
multiplying the input rate from the previous state at (t − y),
i.e., ri−1(t − y), and the probability (fraction of rates in
fluid model) of staying more than y amount of time. We
can obtain the rate of out-flow from state i by integrating
the multiplication of the density (xi(t, y)) and the failure rate
(hi(y)) over y (equation (5)). The fraction of units in state i is
then calculated by integrating the density over y (equation (4)).

State M is the final state, so XM (t) can be obtained by
subtracting the sum of Xi(t), i ∈ {1, . . . ,M − 1}, from 1:

XM (t) = 1−
M−1∑
k=1

Xk(t). (7)

The fluid model described here is used to capture the mean
behavior of a stochastic system. We can obtain the fluid model

by numerically solving the integral equations in (2)-(7). To
confirm the accuracy of the fluid model, we compare the fluid
model with simulation. We consider a four-state system with
Weibull transition times: the transition distribution Fi (i =
1, 2, 3) with shape parameter 3.05 for all i and scale parameter
300, 200 and 168 for i = 1, 2 and 3, respectively. The number
of units is 100. The simulation mean is obtained by averaging
the result of 1,000 independent runs with the time horizon
[0, 1000]. Figure 2 illustrates the number of units in each state
over time. As seen in the figure, the fluid model shows great
accuracy, almost coinciding with the simulation result.

It is worthwhile to mention that the proposed modeling
approach provides several advantages over the existing fluid
model, e.g., in [10]. Ko and Byon [10] approximate a general
lifetime distribution using phase-type distributions. On the
contrary, we directly utilize lifetime distribution functions
without the intermediate step of phase-type approximations.
Doing so considerably simplifies the mathematical represen-
tation with a much smaller number of equations, hence, it is
easier to solve. Moreover, it does not rely on an additional
step required in the approach in [10]—finding a phase-type
distribution approximating the state transition distribution,
which further simplifies the procedure. Most importantly, the
model in [10] is designed for the simultaneous maintenance
which renews every unit at once upon each maintenance
activity. Conversely, the new fluid model presented in this
section enables us to devise the fluid model under the selective
maintenance policy, which is more general than that in [10].

While the new fluid model offers several advantages over the
one presented in [10], it does introduce some computational
challenges. Specifically, the fluid model accommodates non-
Markovian transition times, necessitating the tracking of all
previous state trajectories. This leads to the requirement of
evaluating multiple integrals for a single time point. The
specific integral equations for Xn(t) are as follows: For state
1,

X1(t) = X1(0)F̄1(t)

r1(t) = X1(0)f1(t).

For state 2,

x2(t, y) = F̄2(y)X1(0)f1(t− y)

r2(t) = X1(0)

∫ t

0

f1(t− y)f2(y)dy

X2(t) =

∫ t

0

F̄2(y)X1(0)f1(t− y)dy.

For state 3,

x3(t, y) = F̄3(y)X1(0)

∫ t−y

0

f1(t− y − y1)f2(y1)dy1

r3(t) = X1(0)

∫ t

0

∫ t−y

0

f1(t− y − y1)f2(y1)dy1f3(y)dy

X3(t) =

∫ t

0

F̄3(y)X1(0)

∫ t−y

0

f1(t− y − y1)f2(y1)dy1dy.
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For state 4,

x4(t, y) = F̄4(y)X1(0)

∫ t−y

0

∫ t−y−y2

0

f1(t− y − y1 − y2)f2(y1)

dy1f3(y2)dy2

r4(t) = X1(0)

∫ t

0

∫ t−y

0

∫ t−y−y2

0

f1(t− y − y1 − y2)f2(y1)

dy1f3(y2)dy2f4(y)dy

X4(t) =

∫ t

0

F̄4(y)X1(0)

∫ t−y

0

∫ t−y−y2

0

f1(t− y − y1 − y2)

f2(y1)dy1f3(y2)dy2dy.

For state 5,

x5(t, y) = F̄5(y)X1(0)

∫ t−y

0

∫ t−y−y3

0

∫ t−y−y2−y3

0

f1(t− y − y1 − y2 − y3)f2(y1)dy1f3(y2)dy2f4(y3)dy3

r5(t) = X1(0)

∫ t

0

∫ t−y

0

∫ t−y−y3

0

∫ t−y−y2−y3

0

f1(t− y − y1 − y2 − y3)f2(y1)dy1f3(y2)dy2f4(y3)dy3

f5(y)dy

X5(t, y) =

∫ t

0

F̄5(y)X1(0)

∫ t−y

0

∫ t−y−y3

0

∫ t−y−y2−y3

0

f1(t− y − y1 − y2 − y3)f2(y1)dy1f3(y2)dy2

f4(y3)dy3dy.

For state n,

xn(t, y) = F̄n(y)X1(0)

∫ t−y

0

∫ t−y−yn−2

0

· · ·
∫ t−y−

∑n−2
i=2 yi

0

f1

(
t− y −

n−2∑
i=1

yi

)
f2(y1)dy1 · · · fn−1(yn−2)dyn−2

rn(t) = X1(0)

∫ t

0

∫ t−y

0

∫ t−y−yn−2

0

· · ·
∫ t−y−

∑n−2
i=2 yi

0

f1

(
t− y −

n−2∑
i=1

yi

)
f2(y1)dy1 · · ·

fn−1(yn−2)dyn−2fn(y)dy

Xn(t) =

∫ t

0

F̄n(y)X1(0)

∫ t−y

0

∫ t−y−yn−2

0

· · ·
∫ t−y−

∑n−2
i=2 yi

0

f1

(
t− y −

n−2∑
i=1

yi

)
f2(y1)dy1

· · · fn−1(yn−2)dyn−2dy.

For a fixed t∗, the number of integrals required to calculate
Xn(t∗) is n − 1. Fortunately, many research studies on
maintenance optimization problems, including our previous
work, utilize two to four states. Two states are used in
[38], three states in [39]–[41], and four states in [10], [13],
[15], [42]–[44]. For M = 4, double integrals need to be
solved as XM (t) =

∑M−1
i=1 Xi(t). These double integrals can

be accurately evaluated using existing integration algorithms.
We note that the model presented in [10] struggles due to
the large number of differential equations. Each phase used

for approximating the distribution necessitates solving one
differential equation.

The next section will present the fluid model for selective
maintenance in detail.

B. Fluid model for selective maintenance

Since the maintenance activities change the state of the sys-
tem, we should adjust the fluid model discussed in the previous
section. The fluid model reflecting maintenance activities is as
follows:

X1(t) = X1(0)F̄1(t) +

nt∑
j=1

M∑
i=S+1

Xi(τj)F̄1(t− τj), (8)

r1(t) = −
d

dt
X1(t)

= X1(0)f1(t) +

nt∑
j=1

M∑
i=S+1

Xi(τj)f1(t− τj). (9)

When the nth maintenance activity is completed, the units
from state S + 1 through state M are repaired (replaced) and
become as good as new. The second term of the right-hand side
of (8) represents the newly added fraction of units whenever
the maintenance activity is completed. After being added, the
fraction of units decreases according to the distribution F1(·).
The rate, r1(t) in (9), at which X1(t) is decreasing, is simply
a negative time-derivative of X1(t).

For 2 ≤ i ≤ S, the fluid model is the same as that in (2)-(6),
i.e.,

xi(t, y) = F̄i(y)ri−1(t− y), (10)

ri(t) =

∫ t

0

xi(t, y)hi(y)dy, (11)

Xi(t) =

∫ t

0

xi(t, y)dy. (12)

For S + 1 ≤ i ≤ M − 1, the units are renewed after the
maintenance activities. The fluid model reflecting the renewal
is given by

xi(t, y) = F̄i(y)ri−1(t− y),

ri(t) =

∫ t−τnt

0

xi(t, y)hi(y)dy, (13)

Xi(t) =

∫ t−τnt

0

xi(t, y)dy, (14)

where the rate of flow, ri(·), and the fraction of units,
Xi(·), are reset after each maintenance activity, so the second
parameter, y, which represents the length of stay in state i,
should be restarted as in (13)-(14).

To illustrate, let us consider a four-state fluid system where
the transition time follows the Weibull distribution. Figure 3
shows how the fraction of units in each state evolves over time
when the threshold γ is 0.3 with weights for states 3 and 4
given by 0.5 and 1.0, respectively. We observe spikes when
0.5X3(t) + X4(t) hits 0.3, which means the units in states
3 and 4 are repaired (or replaced) immediately and become
brand-new. Here, we notice an interesting phenomenon that the
dynamics of the fluid system presents a repeated pattern after
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Fig. 2. Comparison between fluid model outputs and simulation outputs
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Fig. 3. Example of fluid model results for a four-state system with selective
maintenance for γ = 0.3, α3 = 0.5, α4 = 1.0 and the Weibull transition
distribution with shape parameter 3.05 for all i and scale parameter 300, 200
and 168 for i = 1, 2 and 3, respectively.

some initial period passes by. It appears that each maintenance
cycle, given any fixed threshold γ, tends to become periodic,
providing an important implication that we can optimize the
average cost for an infinite-horizon selective maintenance
problem in (1) by optimizing the average cost of one cycle.
The next section will explain how we develop a method
for solving the optimization problem in (1) based on this
observation.

V. SOLUTION METHOD FOR SELECTIVE MAINTENANCE
OPTIMIZATION

With the fluid model discussed in Section IV, this section
solves the optimization problem in (1) to find an optimal
threshold, γ∗. Since the maintenance activities are selective,
only a subset of units are repaired or replaced. Therefore, the
process is not regenerated and solving such a problem with
a non-Markovian setting becomes non-trivial. However, the
cyclic pattern we observe in Figure 3 after some warm-up (or
burn-in) periods provides a clue to solve the problem. In vari-
ous numerical settings with a wide range of different settings
of transition distributions, weights and threshold values, we
observe similar patterns that the fraction of units in each state
when the threshold is hit converges, as maintenance activities
are repeated over time. This observation leads to the following
conjecture.

Conjecture V.1 (Convergence of states). Given a threshold
γ, let X(τn+) be the state of the fluid model right after the
threshold is touched and the nth maintenance activity is done.
Then, X(τn+) converges to a constant vector X as n→∞.
Furthermore, τn − τn−1 also converges to a constant τ as
n→∞.

We first provide a proof for a special case—a three-state
continuous time Markov chain. The proof is, nevertheless,
not trivial at all. The detailed proof of Theorems V.2 and



IEEE TRANSACTIONS ON RELIABILITY 8

V.3 below is available in Appendix. Let us consider a three-
state degradation process, i.e., M = 3. State 1 represents a
brand new status, and state 3 indicates failure. Transition times
from state i to state i + 1 follow the exponential distribution
with parameter λi. We assume that λ1 ̸= λ2. Due to the
memoryless property of the exponential distribution, we do not
have integral equations of convolution forms and instead have
a system of ordinary differential equations. Then, we obtain a
closed form solution when we do not consider a maintenance
operation as follows:

X1(t) = e−λ1tX1(0)

X2(t) =
λ1

λ2 − λ1
X1(0)e

−λ1t

+

(
X2(0)−

λ1

λ2 − λ1
X1(0)

)
e−λ2t

X3(t) = 1−X1(t)−X2(t).

Suppose we apply a threshold γ ∈ (0, 1) to state 3 for
triggering a maintenance operation. When a maintenance
operation is triggered and completed, the starting point of a
new maintenance period changes by adding the value of state
3 to that of state 1 and setting the value of state 3 to be zero.
We can consider that this operation resets the clock with a
new initial value.

We consider a set I = {(x1, x2, x3) ∈ R3
++ : x1+x2+x3 =

1}. Let I(k) ∈ I denote the initial point immediately after the
kth maintenance; I(k) = (X1(τk+), X2(τk+), 0). The initial
point at the beginning of the horizon (i.e. t = 0) is given
by I(0) = (1, 0, 0). Then, we have the following theorems to
show the periodic behavior of the system.

Theorem V.2 (The existence and uniqueness of a periodic
solution). Consider a three-state Markovian system where a
maintenance activity is triggered when X3(t) ≥ γ for γ > 0.
There exists a unique I∗ = (x∗

1, x
∗
2, 0) ∈ I satisfying I(k) = I∗

for all k ∈ Z+.

Proof. See Appendix

Theorem V.3 (Global attractiveness). Consider a three-state
Markovian system where a maintenance activity is triggered
when X3(t) ≥ γ for γ > 0. Then, I(k) −→ I∗ as k →
∞. Furthermore, the result holds for any initial point I(0) =
(x1, x2, 0) ∈ I.

Proof. See Appendix

The results in Theorems V.2 and V.3 imply that the propor-
tion of units in each degradation state after each maintenance
action remains the same under the selective maintenance
policy where only units in state 3 are repaired. While these
results are obtained for a specific process, we believe the
results can be extended to other general non-Markovian pro-
cesses, based on our observations in Figure 3 and in other
settings. We note that proving this regenerative nature in a
general setting requires in-depth analysis, e.g., differential
(or integral) equations with discontinuity such as the theory
of the impulsive differential equations as discussed in [45].
Such extensive theoretical analysis in general settings of
non-Markovian systems with an arbitrary number of states

is beyond the scope of this study, as we instead focus on
solving an engineering problem. Thus, we leave the proof of
Conjecture V.1 on the regenerative process in general settings
for future work.

Suppose Conjecture V.1 holds for general non-Markovian
cases. Then the maintenance process becomes asymptotically
a regenerative process, which allows us to convert the opti-
mization problem in (1) into the following problem:

minimize
γ

f0(γ) =
1

τ

(
P +

M∑
i=S+1

CiNXi(τ)

+

∫ τ

0

LNXM (t)dt

)
, (15)

for X(0) = X where X denotes the asymptotic initial state
immediately after each maintenance activity.

Now, we have a simpler form of the optimization problem.
One good feature is that we have a bounded single variable γ ∈
[0, 1]; full enumeration by discretizing the interval is possible.
A plausible way to discretize the space is to use the number
of units. For example, if there are N units in the system,
we can use 1/N to increment the γ value so that we can
directly get the number of units corresponding to the threshold
value γ. However, the challenge comes from the fact that the
asymptotic initial state X depends on the decision variable γ.

To address the challenge, we take a two-step approach. First,
we obtain the asymptotic initial value X using the so-called
warm-up period. The warm-up period is required to acquire
the periodicity of the system. The initial values of X(t) just
after each maintenance activity, i.e., X(τn+), are unknown
except at time 0; X(τn+) is indeed determined by the choice
of threshold γ. Hence, given γ, we numerically calculate X(t)
over time. When it is τn, we set a new initial value, X(τn+).
We keep calculating X(τn+) until ||X(τn+)−X(τn−1+)|| ≤
ε for a predefined value ε > 0 where || · || is the supremum
norm. Then, we set X = X(τn+) and τ = τn−τn−1. Second,
once X and τ are set, we can calculate the objective value in
(15) using numerical integration. Algorithm 1 describes the
solution procedure.

VI. NUMERICAL EXPERIMENTS

This section conducts numerical experiments to demonstrate
the accuracy of our approach. We also perform a sensitivity
analysis in a range of different parameters. Finally, we bench-
mark the proposed threshold-based condition-based mainte-
nance against the alternative periodic maintenance strategy.

A. Experiment setting

We first set the number of degradation states. A too large
M would be unnecessary and require excessive computations,
while a too small M cannot classify each unit’s health con-
dition correctly. Following the literature [10], [15], [39], [42],
[43], [46], we implement four degradation states, e.g., normal,
alert, alarm and failure states, and only repair (or replace) units
in alarm or failure state (i.e. M = 4, S = 2). For the transition
distributions, we use the data describing bearing degradation
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Algorithm 1: Finding optimal threshold and long-run
average cost

Data: N,S,M, ε, P, L, αi, Ci, i = S + 1, · · · ,M
Result: γ∗, OptimalCost
γ ← 1/N
OptimalCost =∞
while γ < 1.0 do

while True do
Solve integral equations (8)-(14) until∑M

s=S+1 αiXi(t) hits γ
τn ← t
τ ← τn − τn−1

if ||X(τn−1)−X(τn)|| < ε then
break

else
X1(τn+)← X1(τn) +

∑M
i=S+1 Xi(τn)

Xi(τn+)← 0.0 for i ∈ {S + 1, . . . ,M}
n← n+ 1

Calculate Cost
if OptimalCost < Cost then

OptimalCost← Cost
γ∗ = γ

γ ← γ + 1/N

in [47] which is also adopted in [10], [15]. Tian and Liao [47]
employ a Weibull distribution with a shape parameter of 3.046
and a scale parameter of 667.6 to characterize the lifetime
distribution of a single unit (a two-state model) in their bearing
degradation case study. We use their data for illustrating
maintenance decision-making. Unlike their model, ours is a
four-state version comprising three transitions. As such, we
divide the scale parameter 667.6 (rounded to approximately
668) into three segments: 300, 200, and 168 for each transition,
retaining the same shape parameter (rounded to approximately
3.05). This implies we use the Weibull distribution as the
transition distribution Fi (i = 1, 2, 3) with a consistent shape
parameter of 3.05 for all i. The scale parameters for i = 1, 2,
and 3 are 300, 200, and 168, respectively.

The long-run average costs from the proposed approach
are obtained using Algorithm 1 with ε = 0.01. Costs from
simulation are calculated by averaging the costs from 100
independent runs with time horizon of 60, 000. Code is written
in Julia 1.7.1 and run under a regular PC environment.

B. Implementation results

We conduct experiments to investigate the approximation
quality of the proposed approach. We borrow the cost structure
for repairing (or replacing) units in states 3 (alert) and 4 (fail-
ure), denoted by C3 and C4, respectively, from [15]—C3 =
1, 800, C4 = 16, 300—. Note that failure state incurs a much
larger repairing cost than alarm state does. Further, we con-
sider the revenue loss, L = 10 per unit time, while the unit is
in state 4 (the failure state). We implement the approach under
different settings. Specifically, we consider six different weight

vectors (α3 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) Without loss of gen-
erality, we set α4 = 1.0 because the relative weight (α3/α4)
determines the optimal cost. We further consider six different
setup costs (P = 3600, 9000, 18000, 36000, 54000, 90000),
in line with the setup cost ratio detailed in [15]. This ratio
signifies the relationship of the setup cost to C3. In our setup,
when C3 = 1, 800: 3, 600 corresponds to a setup cost ratio of
2, 9, 000 to 5, 18, 000 to 10, 36, 000 to 20, 54, 000 to 30, and
90, 000 to 50.

TABLE I
COMPARISON OF LONG-RUN AVERAGE COSTS BETWEEN THE PROPOSED
ANALYTICAL APPROACH AND SIMULATION OVER DIFFERENT SETTINGS

(NOTE: N = 100, α4 = 1.0)

α3 Setup cost Proposed Simulationa Gapb

0.0

3,600 559.67 559.06 (2.50) 0.1%
9,000 615.92 617.37 (3.14) 0.2%

18,000 709.67 716.13 (4.18) 0.9%
36,000 897.17 911.68 (6.78) 1.6%
54,000 1,065.52 1,067.68 (6.29) 0.2%
90,000 1,345.56 1,357.40 (8.05) 0.8%

0.2

3,600 521.92 479.79 (3.48) 8.8%
9,000 595.85 575.61 (4.50) 3.5%

18,000 703.00 677.58 (4.54) 3.8%
36,000 889.29 890.57 (6.07) 0.1%
54,000 1,044.47 1,043.84 (7.20) 0.1%
90,000 1,331.72 1,337.85 (8.05) 0.5%

0.4

3,600 506.95 502.91 (3.79) 0.8%
9,000 570.48 567.54 (4.45) 0.5%

18,000 676.36 673.56 (4.99) 0.4%
36,000 888.12 885.10 (5.20) 0.3%
54,000 1,057.09 1,045.10 (7.83) 1.1%
90,000 1,343.88 1,340.03 (7.48) 0.3%

0.6

3,600 490.23 484.12 (1.88) 1.3%
9,000 578.33 561.66 (4.52) 3.0%

18,000 682.55 675.33 (4.97) 1.1%
36,000 878.21 875.01 (5.74) 0.4%
54,000 1,055.42 1,051.41 (7.14) 0.4%
90,000 1,332.34 1,330.40 (8.46) 0.2%

0.8

3,600 508.81 483.48 (4.03) 5.2%
9,000 581.78 557.30 (3.74) 4.4%

18,000 693.98 674.05 (4.77) 3.0%
36,000 882.77 870.68 (6.25) 1.4%
54,000 1,048.05 1,038.92 (6.23) 0.9%
90,000 1,340.19 1,333.08 (8.07) 0.5%

1.0

3,600 483.43 483.34 (4.01) 0.0%
9,000 553.56 557.77 (3.90) 0.8%

18,000 670.45 683.05 (3.97) 1.8%
36,000 880.53 868.96 (6.15) 1.3%
54,000 1,045.87 1,036.73 (6.82) 0.9%
90,000 1,335.36 1,330.37 (8.24) 0.4%

a : numbers in parentheses are the standard deviation.
b : Gaps are calculated using the formula,

|Simulation−Proposed|×100
Simulation .

To evaluate the approximation quality of the proposed
analytical approach, we compare the long-run average costs
between the proposed approach (third column) and simulation
(fourth column) when N = 100 in Table I. We observe that the
proposed approach achieves good accuracy. Though not shown
in Table I due to space restrictions, we observe similar results
when the number of units increases, i.e., N = 1000, 10000.
We scaled the setup costs proportional to the number of units,
and the long-run average costs are proportional to the number
of units. For example, increasing the number of units from
100 to 1000 (10 times) incurs ten times higher maintenance
costs. The gaps between the proposed method and simulation
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lie between 0.1% and 5.0%, which is similar to the case of
N = 100 and implies N = 100 is large enough for achieving
good accuracy.

The large setup cost tends to cause less frequent main-
tenance operations, which in turn increases the threshold
value. Figure 4 illustrates the optimal thresholds triggering
maintenance operations with different setup costs. Clearly,
larger setup costs delay the maintenance activity; i.e., γ value
increases as P gets larger. We also observe that γ increases in
most cases, as α3 increases. Larger α3 implies that the weight
for repairing units in the alarm state gets similar to that in
the failure state. Thus, the selective maintenance policy waits
until more units in the alarm state transit to the failure state.
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Fig. 4. Optimal thresholds with different setup costs and weights (N = 100)

C. Sensitivity analysis

We conduct additional experiments over a range of cost
parameters to examine their impacts on the maintenance
policy. With N = 100, C3 = 1, 800, C4 = 16, 300, L = 10
and P = 70, 000 as a baseline, we vary the repair costs for
units in alarm (C3) and failure (C4) states and revenue loss (L).
In general, failure cost C4 is much larger than maintenance
cost C3. We fix α3 = 0.6, α4 = 1.0 for experiments.

Table II reports the results of the experiments. First, we
observe that when C3 are 5,400 and 7,200, γ∗ is 1.0. In those
cases, the maintenance operations are triggered after all units
fail. It is due to high repair costs of units in state 3. Similar to
what we observed with high α3 in Fig. 4, larger C3 (with fixed
C4 at 16,300) delays maintenance by increasing γ∗, suggesting
the system operator to wait until more units fail. This can be
explained by the smaller gap between C3 and C4; as the repair
cost C3 for an unit in the alarm state gets closer to the repair
cost C4 for a failed unit, system operators permit more units
to transit to the fail state. On the other hand, larger C4 (with
fixed C3 at 1,800) expedites the maintenance activity to reduce
the number of units in the failure state; see decreasing γ∗ as
C4 increases. Lastly, larger revenue loss L tend to shorten the
maintenance interval via smaller γ∗.

TABLE II
LONG-RUN AVERAGE COSTS OVER DIFFERENT COST FACTORS

γ∗ Maintenance cost
Baseline 0.16 1,178.49

C3

300 0.16 923.29
2,700 0.16 1,331.62
5,400 1.0 1,686.29
7,200 1.0 1,686.29

C4

4,075 0.73 735.52
8,150 0.2 998.00

32,600 0.11 1,401.95
48,900 0.11 1,556.13

L
30 0.16 1,192.83
50 0.16 1,207.17
100 0.16 1,243.02
200 0.13 1,292.07

D. Comparison with scheduled maintenance

Finally, we compare our approach with the periodic mainte-
nance strategy. We consider two periodic maintenance sched-
ules, referred to as Scheduled236 and Scheduled447, based on
the mean times to alert (236 days) and alarm states (447
days) obtained from the state transition distributions Fi(·),
i ∈ {1, 2, 3} explained in Section VI-A. When conducting
a maintenance activity in the proposed approach, only units in
state S + 1 through M (i.e., alarm and failure states in this
case) are repaired (or replaced).

Table III shows experimental results. We observe that be-
tween the two periodic maintenance policies, Scheduled236

outperforms Scheduled447. Increasing the setup cost makes the
gap between two polices smaller because the cost increases
faster under Scheduled236 than under Scheduled447. However,
our proposed policy dominates both periodic policies in all
cases with considerably smaller long-run average costs.

TABLE III
COMPARISON OF LONG-RUN AVERAGE COSTS WITH SCHEDULED
MAINTENANCE (N = 100, C3 = 1, 800, C4 = 16, 300, L = 10)

P a Proposed Scheduled236b Scheduled447b
γ∗ Cost

3.6 0.05 490.23 1,458 (11.82) 1,737.72 (8.88)
9 0.10 578.33 1,477.59 (12.62) 1,749.74 (8.72)
18 0.11 682.55 1,508.26 (12.87) 1,770.50 (7.82)
36 0.11 878.21 1,577.59 (11.05) 1,811.42 (8.58)
54 0.16 1,055.42 1,643.25 (11.96) 1,850.43 (8.69)
90 0.16 1,332.34 1,777.27 (10.51) 1,932.09 (9.22)
a Actual setup cost P is multiplied by 1,000.
b Subscripts 236 and 447 are maintenance intervals. Numbers in

parentheses are the standard deviation.

E. Optimizing αi and S

As mentioned in Section III, the values of αi and S can be
determined depending on the problem context. However, they
can be optimized in terms of cost. In our current setting (M =
4), we can simply enumerate possible cases by discretizing
α3 values. Table IV shows the optimal α∗

3 by enumerating
discretized values when N = 100, α4 = 1.0, P = 18000,
C3 = 1800, C4 = 16300, and L = 10.

We observe that the optimal threshold γ∗ tends to increase
as α3 increases. However, the optimal cost does not exhibit
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TABLE IV
OPTIMIZING S AND α3 BY ENUMERATION

S = 2
α3 cost γ∗

0.00 709.67 0.01
0.05 700.00 0.02
0.10 686.43 0.02
0.15 685.72 0.03
0.20 703.00 0.04
0.25 692.42 0.05
0.30 701.18 0.06
0.35 700.66 0.06
0.40 676.36 0.07
0.45 700.70 0.08
0.50 709.68 0.09
0.55 656.58 0.08
0.60 682.55 0.11
0.65 662.37 0.11
0.70 663.36 0.10
0.75 692.73 0.15
0.80 693.98 0.13
0.85 663.20 0.12
0.90 684.53 0.16
0.95 699.42 0.16
1.00 670.45 0.14

S = 3
N/A 1,801.20 0.12

monotonic behavior. In Table IV, we see that the optimal α3

is 0.55 with γ∗ = 0.08 when S = 2. Since the proposed
algorithm relies on numerical iterations, the cost values are
slightly bumpy over α3. Improving the algorithm’s stability is
an avenue for future work.

Due to the nature of our algorithm, obtaining the optimal
cost values for given αi and S is only possible through
numerical evaluation. Thus, the cost function can be regarded
as a black-box function. For larger values of M , where the
enumeration approach is impractical, techniques designed for
hyperparameter optimization can be employed. One potential
method is Bayesian optimization, which has recently gained
significant attention from researchers for tuning hyperparam-
eters [48].

VII. CONCLUSION

This study derives a new fluid degradation model for large-
scale systems consisting of many independent homogeneous
units. We show that the fluid model can accurately describe
the dynamics of the system-level health condition over time.
Based on the fluid model, we devise a cost-effective selective
maintenance strategy that minimizes a long-run average cost
by triggering a maintenance activity when hitting a thresh-
old value. Finding the optimal threshold is not trivial since
the optimization problem involves integral equations. Further,
the selective nature of maintenance operations prevents us
from using a renewal theory. We, however, observe that
the degradation process with selective maintenance becomes
asymptotically regenerative. Using this finding, we reformulate
the problem and devise a new algorithm.

From the numerical experiments, we confirm that the pro-
posed fluid-model-based strategy estimates the system dynam-
ics and maintenance costs accurately. We benchmark the pro-
posed strategy against the two periodic maintenance policies

where the periods are obtained from the average transition
time to alert and alarm states. Notably, the proposed strategy
dominates both periodic policies.

There can be a few directions for future work extending
the proposed approach. First, we plan to take several types
of dependencies among units into consideration. This paper
accounts for only economic dependence among units. Con-
sidering other dependence such as stochastic and structural
dependence will make the model more realistic, although it
would result in a much complicated mathematical model.
Second, this paper provides the proof for the conjecture on
the regenerative process for a limited three-state Markovian
case. We plan to extend it and conduct comprehensive analysis
for more general non-Markovian settings. We believe doing
so will involve in-depth theoretical analysis related to the
impulsive ordinary differential equation.

APPENDIX

Proof of Theorems V.2 and V.3 Recall the solution of the
system of the ordinary differential equations.

X1(t) = e−λ1tX1(0)

X2(t) =
λ1

λ2 − λ1
X1(0)e

−λ1t

+

(
X2(0)−

λ1

λ2 − λ1
X1(0)

)
e−λ2t

X3(t) = 1−X1(t)−X2(t).

(16)

We consider a flow ϕ associated with X. Let I be the
initial point at time 0. Let H and τ be the point and the time
when ϕ hits the threshold, γ, respectively; H = ϕ(I, τ). The
maintenance operation moves the value of state 3 and keeps
the value of state 2 untouched. As such, if there exist I and
H such that I|x2

= H|x2
, the flow ϕ(I, t) forms a periodic

cycle, where X|xi denote the xi-coordinate of X.

Lemma A.1. There exist I and H such that I|x2
= H|x2

.

Proof. Now we will prove the existence of such I and H.
In our maintenance problem, X(0) = (1, 0, 0). The starting
points after successive maintenance operations lie in the set
I = {X = (X1, X2, X3) ∈ R3

+ | X1 + X2 = 1, X3 = 0}.
Consider an arbitrary initial point I ∈ I and its corresponding
hitting point H with hitting time τ . Define

f(I) := I|x2
−H|x2

= X2(0)−X2(τ).

Then, using (16) and the fact that X1(0) + X2(0) = 1, we
have

f(I) = X2(0)−
λ1

λ2 − λ1
X1(0)e

−λ1τ

−
(
X2(0)−

λ1

λ2 − λ1
X1(0)

)
e−λ2τ

=
1

λ2 − λ1

(
λ1e

−λ1τ − λ2e
−λ2τ + (λ2 − λ1)

)
X2(0)

− λ1

λ2 − λ1

(
e−λ1τ − e−λ2τ

)
. (17)
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Consider the boundary points of I: I0 = (1, 0, 0) and I1 =
(0, 1, 0). The corresponding hitting times are denoted by τI0
and τI1 , respectively. Then, we have

f (I0) = −
λ1

λ2 − λ1

(
e−λ1τI0 − e−λ2τI0

)
< 0 (18)

f (I1) =
1

λ2 − λ1

(
λ1e

−λ1τI1 − λ2e
−λ2τI1 + (λ2 − λ1)

)
− λ1

λ2 − λ1

(
e−λ1τI1 − e−λ2τI1

)
= 1− e−λ2τI1 > 0. (19)

Therefore, by the intermediate value theorem, there exists I∗ ∈
I such that f(I∗) = 0.

To extend Lemma A.1 to the uniqueness of such a cycle,
Lemmas A.2 and A.3 show that f(I) is an increasing function
in X2(0).

Lemma A.2. τ is strictly increasing in X1(0).

Proof. Consider two initial points, I1 = (x1, x2, 0) and I2 =

(x′
1, x

′
2, 0) with x1 < x′

1. Let XIj
i (t) denote the Xi(t) with

initial point Ij for i ∈ {1, 2, 3} and j ∈ {1, 2}. Then, for all
t > 0,

XI1
3 (t)−XI2

3 (t) = XI2
1 (t)−XI1

1 (t) +XI2
2 (t)−XI1

2 (t)

= −λ2(x
′
1 − x1)

e−λ2t − e−λ1t

λ2 − λ1
> 0.

(20)

From (20), we see that X3(t) hits the threshold γ early when
X1(0) = x1 is small.

Lemma A.3. f(I) is a strictly increasing function in X2(0)

Proof. Define g(I) := I|x1
− H|x1

. Then, we have g(I) =
γ−f(I). If we show that g(I) is a strictly increasing function
in X1(0), f(I) is a strictly decreasing function in X1(0). Then,
by X2(0) = 1 −X1(0), f(I) is a strictly increasing function
in X2(0).

g(I) = X1(0)−X1(τ) = X1(0)(1− e−λ1τ )

∂g(I)

∂X1(0)
= 1− e−λ1τ +X1(0)λ1e

−λ1τ
∂τ

∂X1(0)

= 1− e−λ1τ

(
1−X1(0)λ1

∂τ

∂X1(0)

)
> 1− e−λ1τ

> 0

Theorem V.2. Let I(k) ∈ I denote the initial point right after
the kth maintenance where I(0) denotes the initial point at the
beginning of the horizon (i.e., t = 0). Then, there exists a
unique I∗ ∈ I satisfying I(k) = I∗ for all k ∈ Z+.

Proof. Lemma A.1 shows the existence of I∗, and Lemma A.3
proves the uniqueness of I∗.

Next, we prove the global attractiveness of the solution.

Lemma A.4.
∂τ

∂X1(0)
≤ 1

λ1X1(0)
. (21)

Proof.

X3(τ) = γ = 1−X1(τ)−X2(τ)

= 1− e−λ1τX1(0)−
λ1

λ2 − λ1
X1(0)e

−λ1τ

−
(
X2(0)−

λ1

λ2 − λ1
X1(0)

)
e−λ2τ

= 1− λ2

λ2 − λ1
e−λ1τX1(0)

−
(
1− λ2

λ2 − λ1
X1(0)

)
e−λ2τ .

0 =
∂γ

∂X1(0)

= − λ2

λ2 − λ1

(
e−λ1τ − e−λ2τ

)
+

(
λ1λ2

λ2 − λ1
e−λ1τX1(0)

+

(
λ2 −

λ2
2

λ2 − λ1
X1(0)

)
e−λ2τ

)
∂τ

∂X1(0)
.

What we need to show is

∂τ

∂X1(0)
=

λ2

(
e−λ1τ − e−λ2τ

)
λ1λ2e−λ1τX1(0) + (λ2

2 − λ1λ2 − λ2
2X1(0)) e−λ2τ

≤ 1

λ1X1(0)
(22)

Consider the following two cases:
Case 1: For λ1 > λ2, then e−λ1τ − eλ2τ < 0 and
λ1λ2e

−λ1τX1(0) +
(
λ2
2 − λ1λ2 − λ2

2X1(0)
)
e−λ2τ < 0. S

Showing (22) is equivalent to the following

λ2

(
e−λ1τ − eλ2τ

)
λ1X1(0)

≥ λ1λ2e
−λ1τX1(0) +

(
λ2
2 − λ1λ2 − λ2

2X1(0)
)
e−λ2τ

⇐⇒ −λ1λ2X1(0) ≥ λ2
2 − λ1λ2 − λ2

2X1(0)

⇐⇒ λ2 (λ2 − λ1) (X1(0)− 1) ≥ 0.

Case 2: For λ1 < λ2, similar to Case 1, we can show (22) by
showing λ2 (λ2 − λ1) (X1(0)− 1) ≤ 0. Therefore, we have

∂τ

∂X1(0)
≤ 1

λ1X1(0)
.

Corollary A.5. Define g(I) := I|x1
− H|x1

. Then 0 <
∂g(I)
∂X1(0)

≤ 1

Proof. From the proof of Lemma A.3, we have

∂g(I)

∂X1(0)
= 1− e−λ1τ +X1(0)λ1e

−λ1τ
∂τ

∂X1(0)

= 1− e−λ1τ

(
1−X1(0)λ1

∂τ

∂X1(0)

)
≤ 1,

which completes the proof.

Theorem V.3. For any I = I(0) ∈ I, I(k) −→ I∗ as k →∞.
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Proof. Define X∗
1 = I∗|x1

. By Corollary A.5,

0 <
g(I)− g (I∗)

X1(0)−X∗
1

=
X1(0)−X1(τ)− γ

X1(0)−X∗
1

≤ 1.

Consider the following cases:
Case 1: For X1(0) = X∗

1 , by Theorem V.2, we have

∥I|x1 −X∗
1∥ − ∥I(1)|x1 −X∗

1∥ = 0.

Case 2: For X1(0) < X∗
1 , it holds

X1(0)−X1(τ)− γ < 0, 0 ≥ X1(τ) + γ −X∗
1∥∥I|x1

−X∗
1

∥∥− ∥I(1)|x1
−X∗

1∥
= ∥X1(0)−X∗

1∥ − ∥X1(τ) + γ −X∗
1∥

= (X∗
1 −X1(0))− (−X1(τ)− γ +X∗

1 )

= X1(τ) + γ −X1(0)

> 0

Case 3: For X1(0) > X∗
1 , we similarly obtain

X1(0)−X1(τ)− γ > 0, 0 ≤ X1(τ) + γ −X∗
1∥∥I|x1

−X∗
1

∥∥− ∥I(1)|x1
−X∗

1∥
= ∥X1(0)−X∗

1∥ − ∥X1(τ) + γ −X∗
1∥

= (X1(0)−X∗
1 )− (X1(τ) + γ −X∗

1 )

= −X1(τ)− γ +X1(0)

> 0

The sequence
{
∥I(k)|x1 −X∗

1∥, k ∈ N
}

in R is monotonically
decreasing and bounded below with lower bound 0 . By the
monotone convergence theorem, this sequence converges to
inf
∥∥I(k)|x1

−X∗
1

∥∥ = 0, i.e., I(k) converges to I∗ as k →
∞.
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