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Abstract. Parameter calibration aims to estimate unobservable parameters used in a com-
puter model by using physical process responses and computer model outputs. In the lit-
erature, existing studies calibrate all parameters simultaneously using an entire data set. 
However, in certain applications, some parameters are associated with only a subset of data. 
For example, in the building energy simulation, cooling (heating) season parameters should 
be calibrated using data collected during the cooling (heating) season only. This study pro-
vides a new multiblock calibration approach that considers such heterogeneity. Unlike existing 
studies that build emulators for the computer model response, such as the widely used Bayes-
ian calibration approach, we consider multiple loss functions to be minimized, each for a block 
of parameters that use the corresponding data set, and estimate the parameters using a non-
linear optimization technique. We present the convergence properties under certain conditions 
and quantify the parameter estimation uncertainties. The superiority of our approach is dem-
onstrated through numerical studies and a real-world building energy simulation case study.
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1. Introduction
Recent advancements in computing have enabled the 
adoption of computer models as an essential tool to de-
sign and control systems. In general, a computer model 
consists of a set of mathematical functions that are based 
on complex physics-based first principals to closely re-
semble a real-world system. A computer model is usually 
used with a simulator. A simulator receives input vari-
ables that are typically observable or controllable, such as 
operational conditions, and it generates outputs through 
simulation. Besides the input variables, additional para-
meters need to be specified a priori to run simulation. 
These parameters are often not observable; thus, their 
values should be estimated using either physical laws or 
data. When physical laws that identify appropriate 
parameter values are not available, one can use a data- 
driven approach using data collected from the physical 
system. Such a data-driven procedure is called parameter 
calibration in the literature (Kennedy and O’Hagan 2001).

Over the last couple of decades, parameter calibration 
has been studied in many fields such as biology, chemis-
try, climatology, and engineering (Santner et al. 2018). 
We provide a detailed literature review in Section 3. 
Existing studies, by and large, use limited data sets when 

physical trials are limited, and computer models are 
expensive to run. To accommodate data scarcity, they 
build surrogate models for computer models and calibra-
tion is performed with surrogate models. Typically, they 
generate data from a computer model a priori through a 
fixed set of simulation runs. With the resulting data, they 
build a response surface (or emulator) for the computer 
model output using Gaussian processes (GPs) or other 
statistical models (Higdon et al. 2004, Tuo et al. 2021). 
Consequently, calibration accuracy highly depends on 
the emulator accuracy. When the computer model data 
are generated at less informative design points, for exam-
ple, values far from (unknown) true parameter values, 
the emulator may not accurately characterize the res-
ponse surface near the true parameter values, leading to 
inaccurate calibration results.

Recently, Liu et al. (2021) discussed a necessity to 
develop a new calibration procedure for big data set-
tings. In many operational systems, thanks to the recent 
advances in sensing technology and data acquisition 
systems, massive amounts of observational data from 
an actual physical system have become available. Fur-
thermore, a sufficiently large number of simulation data 
can be generated through a medium- or low-fidelity 
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simulator or using advanced computing facilities, for 
example, supercomputers. When a large number of field 
observations and simulation data are available, Liu et al. 
(2021) presented a new approach to directly use data 
without building emulators.

The previously mentioned existing literature cali-
brates all parameters in a similar manner despite of het-
erogeneous data requirement. That is, they calibrate all 
parameters at once with the same data set. In some 
applications, however, some parameters are associated 
with certain specific operating conditions or a subset 
of datasets. Consider a building energy model (BEM). 
Among many parameters that need to be calibrated, 
some parameters are season dependent, and thus they 
should be used for simulating building energy opera-
tions only in specific seasons (Xu et al. 2021). For exam-
ple, “cooling supply air flow rate” is a cooling-season 
parameter, whereas “heating supply air flow rate” is 
associated with a heating season. On the other hand, 
other parameters, for example, “fan total efficiency,” 
are global parameters that need to be used throughout 
the year. This BEM parameter calibration, as our moti-
vating application, will be explained in more detail in 
Section 2.

From a data science point of view, these season- 
dependent (or block-dependent) parameters should 
be calibrated using data (both field operational and 
simulation-generated data) associated with the corre-
sponding season (or block) only. That is, one needs to 
use a subset of data. When the required data set for each 
group of parameters is exclusive from one another, one 
can calibrate parameters separately for each group. 
However, when the subsets for different groups overlap, 
prior methods become inappropriate.

This study develops a new calibration approach where 
parameters can be divided into multiple groups and 
each group of parameters is associated with a subset (or 
block) of the entire data set. Specifically, we estimate the 
parameters by minimizing multiple loss functions, each 
of which is associated with each group of parameters. 
Our proposed approach is useful when large computer 
experiments can be conducted, for example, from a low- 
to medium-fidelity computer model.

We summarize and highlight the key contribution of 
this paper as follows. 
• Our approach estimates unobservable parameters 

employed in a computer model where parameters are 
associated with different subsets of observational data 
that possibly overlap with one another. To the best of 
our knowledge, this is the first calibration study that 
takes this special problem structure into consideration 
in the calibration procedure.
• One salient feature of the proposed approach is 

that it adaptively generates data on the fly from the com-
puter model during the calibration procedure so that 
the most appropriate data can be produced from the 

computer model. This is different from the traditional 
frameworks that generate simulation data at preselected 
data points a priori.
• To minimize multiple loss functions, we design a 

nonlinear optimization algorithm and derive its associ-
ated convergence guarantees. Under certain (reasonable) 
conditions, our analysis provides strong guarantees for 
our algorithm for different classes of functions.
• We conduct numerical experiments on a wide range 

of settings and a case study with real data to demonstrate 
the performance of the proposed approach. The results 
indicate its superiority with respect to multiple criteria, 
including estimation accuracy, uncertainty quantifica-
tion, computational efficiency, and scalability, over alter-
native approaches.

A preliminary version of this work is presented in a 
short conference paper (Xu et al. 2021). In this paper, we 
substantially extend the analysis to connect the calibra-
tion procedure with the statistical parameter estimation, 
derive and present convergence guarantees, quantify es-
timation uncertainties, and provide extensive empirical 
results via numerical examples and a case study.

The rest of this paper is organized as follows. Section 
2 discusses the BEM application as our motivating 
example and other examples from various applications. 
Section 3 provides a literature review of related meth-
ods. Section 4 gives a formulation of the problem. Sec-
tion 5 develops a new algorithm to solve the problem 
and studies the convergence properties. We evaluate 
the performance of our methodology using numerical 
examples and building energy simulation case study in 
Sections 6 and 7, respectively. Finally, Section 8 pro-
vides a brief conclusion.

2. Applications
In this section, we introduce the motivating building 
energy application and discuss the wide applicability 
of our proposed method.

2.1. Motivating Application: Building 
Energy Model

A physics-based BEM, which simulates the building 
energy operations, can play an important role in optimiz-
ing building design and operations. To effectively use the 
BEM, several parameters that specify building character-
istics need to be estimated using operational data. Table 1
lists the parameters used in the BEM simulator, called 
EnergyPlus, which is developed and maintained by the 
U.S. Department of Energy’s National Renewable Energy 
Laboratories (U.S. Department of Energy 2019).

A unique aspect of the BEM is the seasonal depen-
dency of the parameters, which is the focus of our 
study. Among the parameters, some parameters related 
to lighting, domestic hot water, window material, and 
ventilation can be considered as global parameters that 
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are associated with the entire year-long operational 
data and simulation. On the contrary, cooling- and 
heating-related parameters are only associated with 
their seasonal portions of the year-long data. Interest-
ingly, it is possible that different seasons may overlap in 
some areas. For example, in Texas, buildings operate 
heating devices from November to April, whereas cool-
ing systems run from March to November. Hence, dur-
ing some periods of time, they operate both heating and 
cooling devices. Motivated by the BEM parameter cali-
bration, this study develops a new calibration approach 
when parameters need to be calibrated with different 
portions of data.

2.2. Other Applications
There are various applications where our proposed 
method can be used. First, consider the hydrological 
computer model that simulates water flow to estimate 
natural system behaviors affected by climate change, 
land use, and so on. This model can be used to investi-
gate the rainfall-runoff relationship for the windrow 
compositing pad to estimate the amount of runoff (Dun-
can et al. 2013, Bhattacharjee et al. 2019). To accurately 
simulate rainfall-runoff dynamics, several parameters, 
including the depth of surface, depth of subsurface, satu-
rated hydraulic conductivity of the gravel media, and 
saturated hydraulic conductivity of the supporting soil 
below the media, need to be calibrated. Among them, 
the depth of surface and depth of subsurface can be 
regarded as global parameters that are associated with 
the entire year-long data, whereas others are possibly 
season-dependent parameters associated only with their 
seasonal portion of data because they are generally af-
fected by weather.

Another application is the wind flow model that 
characterizes spatially heterogeneous wind patterns 
within a wind farm due to the interactions among tur-
bines (You et al. 2017, 2018). Recently, Howland et al. 
(2022) presented a flow model that consists of two sub-
models: the power-yaw model and wake effect model. 

The power-yaw model predicts the power production 
of upwind turbines (yawed turbines) with a parameter 
λp that adjusts the power generation amount in a yaw- 
misalignment setting. The wake effect model predicts 
the wind speed deficit at downstream turbines (waked 
turbines) due to the shading effect of upwind turbines 
(Liu et al. 2021) so that it estimates the power produc-
tion of the waked turbines. This wake effect model 
takes the wake spreading coefficient kw and the propor-
tionality constant of the modeled Gaussian wake σ0 as 
parameters. Among the parameters, λp can be consid-
ered as a global parameter that is employed in all wind 
conditions. On the other hand, kw and σ0 depend on 
atmospheric conditions (Howland et al. 2022), which 
are calibrated using a portion of data collected under 
specific conditions.

Last, consider a system with a hierarchical block 
structure. One example could be a pandemic simula-
tion model for infectious diseases. When an outbreak, 
such as COVID-19, occurs, it is important to predict the 
spread of infectious diseases. In the simulation models, 
some parameters such as infection rate, reinfection rate, 
and positive test rate should be calibrated to achieve 
accurate predictions and they are usually associated 
with specific geographical areas. These areas overlap 
hierarchically from a country level, followed by state, 
county, city levels, and so on, and each parameter 
should be calibrated using the data obtained from the 
associated area of interest. For instance, data to predict 
the infection rate at a city level overlap with that at a 
county level.

3. Literature Review
In this section, we provide a literature review of several 
relevant methodologies.

3.1. Statistical Calibration Studies
The seminal work in modern parameter calibration is 
Bayesian calibration (Kennedy and O’Hagan 2001, Hig-
don et al. 2004). It uses a linear linkage model to connect 

Table 1. Seasonal Dependency of the BEM Parameters

Parameter group Description Schedule in Texas

Global parameters ug Lighting level January to December
Ceiling fan design level
Maximum supply air temperature
Heater thermal efficiency
Fan total efficiency
Ventilation design flow rate

Cooling-season parameters uc Solar transmittance March to November
Gross rated cooling COP
Gross rated total cooling capacity
Cooling supply airflow rate

Heating-season parameters uh Fuel nominal capacity January to April, November, 
DecemberBurner efficiency

Heating supply airflow rate
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the responses of physical processes with computer mod-
el’s outputs, and the calibration parameters and hyper-
parameters in mean vectors and covariance matrices of 
the GP emulators are estimated from posterior distribu-
tions. The Bayesian calibration methodology has gained 
popularity due to its ability to quantify estimation uncer-
tainties with limited field observations and/or scant 
simulation data (Kennedy and O’Hagan 2001, Higdon 
et al. 2004, Gramacy et al. 2015). Recently, Tuo and Wu 
(2016) suggested that the Bayesian approach could result 
in unreasonable estimates for imperfect computer mod-
els. Here, an imperfect computer model implies that the 
outputs of the model, even with the optimally calibrated 
parameters, are different from the expected outcomes of 
a physical process. To address this limitation, Tuo and 
Wu (2015) presented a new calibration approach from a 
frequentist point of view.

Among these statistical methods, studies in the build-
ing energy literature have mainly adopted the Bayesian 
calibration approach (Coakley et al. 2014, Chong and 
Menberg 2018). However, the Bayesian approach has 
several limitations. First, it is computationally intensive, 
so studies mostly use aggregated data, for example, 
monthly (Heo et al. 2012, 2013, 2015; Kim and Park 2016; 
Li et al. 2016; Tian et al. 2016; Kristensen et al. 2017a; Lim 
and Zhai 2017; Sokol et al. 2017) or annual (Booth et al. 
2013) data. Some studies use hourly data, but they use a 
small subset of hourly data, instead of using the whole 
data set collected over a sufficiently long period of time 
(Manfren et al. 2013, Chong and Lam 2017, Chong et al. 
2017, Kristensen et al. 2017b, Menberg et al. 2017). In 
Chong et al. (2017), only 80 hourly data samples are 
selected from the data set collected for three months. To 
relieve the computational burden, a lightweight Bayes-
ian calibration that uses a linear regression emulator is 
presented in Li et al. (2016). Menberg et al. (2017) use the 
Hamiltonian Monte Carlo sampling to obtain the poste-
rior distribution more efficiently. Despite these advances, 
the Bayesian calibration approach still remains computa-
tionally demanding, which limits the use of large-size 
data sets.

Second, the results from Bayesian calibration are sensi-
tive to the prior specification (Liu et al. 2021). Our analy-
sis, which will be discussed in more detail in Section 7, 
indicates that the posterior density is heavily affected by 
the prior specification. When a noninformative prior is 
employed, the resulting posterior tends to become nonin-
formative, showing a relatively flat posterior distribution. 
We believe this is because the use of limited data (either 
aggregated monthly or yearly data, or a small number of 
selected hourly data) provides insufficient information to 
generate a meaningful posterior. Although a more infor-
mative prior leads to a sharper posterior, it requires 
domain knowledge for the appropriate prior setting.

Furthermore, the Bayesian approach in the BEM 
calibration studies limits the number of calibration 

parameters to two to five. This is because the hyperpara-
meter estimation of the covariance function becomes 
computationally prohibitive as the problem size grows. 
Furthermore, compounded with the aforementioned 
issues of limited data, when multiple parameters are cal-
ibrated, overparameterization may occur, resulting in a 
relatively flat posterior, which does not generate mean-
ingful calibration results.

Most importantly, existing approaches cannot handle 
multiple blocks of overlapping data. In particular, when 
the block sizes are different, one might suggest that the 
problem is similar to the class imbalance problem where 
the data size of each class is substantially different (Byon 
et al. 2010). In such cases, one possible solution could be 
to impose different weights on each data block. How-
ever, how to differentiate weights across blocks is not 
straightforward. In particular, when data blocks overlap, 
if the algorithm calibrates the parameters with their 
small portion of data with a higher weight, it would also 
affect other blocks with larger portions of data. Thus, the 
weight should consider the overlapping portion as well 
as the data size of each block; devising a proper weight-
ing scheme with rigorous justification is challenging.

3.2. Other Related Studies
We also review two other streams of work that are rele-
vant to this study, namely, adaptive sampling and mul-
titask learning. First, adaptive sampling, also known as 
sequential design in the statistical literature and active 
learning in the machine learning literature, has been 
actively studied. The idea is to collect informative data 
points sequentially to construct surrogates and/or min-
imize a black box function by accounting for the trade-
off between exploration and exploitation (Liu et al. 
2018). First, in surrogate modeling studies that often 
use GPs, adaptive sampling strategies choose the next 
design point that maximizes predictive variance or 
maximizes the average reduction in variance (Liu et al. 
2018, Gramacy 2020). These studies aim to construct 
accurate surrogates.

Second, Bayesian optimization (BO) has received much 
attention recently for minimizing expensive black box 
function. BO proceeds by modeling the objective func-
tion via a GP, optimizing an acquisition function to find 
the next design point and then updating the posterior 
distribution of the GP. Acquisition functions, for exam-
ple, expected improvement (Jones et al. 1998) and lower 
confidence bound (Srinivas et al. 2010), attempt to strike 
a balance between the exploration of a new design point 
with high uncertainty and exploitation with a low objec-
tive function value. More details on BO can be found in 
Shahriari et al. (2015) and Frazier (2018). Typically, BO 
aims to minimize a single objective. Although the multi-
task BO (Swersky et al. 2013) is proposed to handle mul-
tiple objective functions, it uses the same training data 
for all objectives to perform optimization. Our proposed 

Jeong et al.: Multiblock Parameter Calibration in Computer Models 
4 INFORMS Journal on Data Science, Articles in Advance, pp. 1–22, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

73
.1

44
.1

52
.7

2]
 o

n 
12

 M
ay

 2
02

3,
 a

t 0
6:

57
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



method solves a multiobjective problem with multiple 
blocks of data that possibly overlap with one another.

On the other hand, multitask learning aims to learn 
multiple tasks simultaneously by leveraging knowledge 
learned from one or some tasks while exploiting com-
monalities and differences (Zhang and Yang 2021). It 
helps to improve prediction accuracy and computational 
efficiency for learning multiple tasks compared with 
individual task learning. In principle, the proposed mul-
tiblock calibration methodology can be regarded as a 
special case of multitask learning, if we consider calibrat-
ing each block of parameters as each task; updated para-
meters associated with one block affect the loss function 
in other blocks so that loss function values benefit from 
or are hurt by others. However, multitask learning is typ-
ically performed in a supervised learning setting with a 
fixed data set, whereas our proposed method exploits 
adaptive sampling. Moreover, in multitask learning, each 
task is learned with its own data set, which is disjoint 
from other tasks’ data; however, our approach accounts 
for overlapping blocks of data.

4. Problem Formulation
We first present a calibration problem in a general 
single-block calibration setting in Section 4.1 and extend 
it to a multiblock parameter calibration problem in Sec-
tion 4.2.

4.1. Single-Block Parameter Calibration
Let x ∈Ω ⊆ Rd denote the vector of physically observ-
able input variables of dimension d ∈ Z+ in a system, 
where Ω is a convex and compact region of input vari-
ables that is a subset of Rd. Let u ∈Θ ⊆ Rp denote a set of 
calibration parameters of dimension p ∈ Z+. Let y(x) ⊆ R 
denote the noisy field observational data of its true phys-
ical process ζ(x) at input x. Let η(x, u) ⊆ R denote the 
response from the computer model, simulating the true 
process ζ(x) at input x. For instance, in the building 
energy simulation, x can be hourly environmental condi-
tion such as temperature, y(x) the actual hourly electric-
ity consumption, and η(x, u ) the electricity consumption 
generated from BEM. The unknown calibration parame-
ter vector u needs to be estimated using y(x) and η(x, u).

Assuming the simulator represents the physical pro-
cess accurately, Higdon et al. (2004) present the regres-
sion model to connect physical process responses with 
computer model outputs as

y(xj) � η(xj, u ) + ɛj, j � 1, 2, : : : , n, (1) 

where n denotes the number of observations, and ɛj 
an observation error that follows an independently 
and identically distributed (i.i.d.) normal distribution, 
ɛj ~iid 

N (0,σ2).

The likelihood function of u is then

L(u ,σ2 |y(x)) �
Yn

j�1
N (η(xj, u ),σ2), (2) 

or more explicitly,

L(u ,σ2 |y(x)) �
Yn

j�1

1
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2
√ exp �

1
2σ2 (y(xj)� η(xj,u))

2
� �

:

(3) 

To estimate u , let us consider the maximum likelihood 
estimation (MLE) method. The log-likelihood function 
is

ℓ(u ,σ2 |y(x)) ��n
2 log2π� n

2 logσ2

�
1

2σ2

Xn

j�1
(y(xj)� η(xj, u))2: (4) 

We now maximize the log-likelihood to obtain û MLE 
given σ2 as

û MLE � arg max
u∈Θ

1
n
ℓ(u |y(x))

� arg min
u∈Θ

1
n
Xn

j�1
(y(xj)� η(xj, u))2 :� F(u ): (5) 

Maximizing the likelihood function is equivalent to 
minimizing the empirical loss function that quantifies 
the discrepancy between the computer model output 
η(x, u ) and physical process data y(x) with L2 norm. 
This calibration procedure that minimizes the empirical 
loss aligns with the idea of L2 calibration studied in Tuo 
and Wu (2015). Tuo and Wu (2015) aimed to find the 
parameters that minimize the L2 distance between the 
physical process responses and computer model out-
puts. Under the limited data setting, they built emula-
tors for both computer model outputs and physical 
process responses. However, we consider a situation 
where a sufficiently large number of physical observa-
tional data are available and a computer model is rela-
tively cheap to run.

With data availability, instead of generating data from 
a computer model at predefined design points, we want 
to generate computer model data more effectively so 
more useful data can be used for the calibration purpose 
and directly use it to estimate the parameters without 
building emulators. To this end, we minimize the loss 
functions in (5) with respect to u . As the computer model 
output η(x, u) is likely nonlinear, we consider nonlinear 
optimization techniques. Consider a first-order optimiza-
tion method, that is, gradient descent (GD). The GD 
method works by iteratively updating u with u← u �
α∇F(u) until a suitable termination criterion is satisfied, 
where F(u) is the empirical loss function at u , ∇F(u )
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represents its gradient, and α�is a step size. Here, because 
η(x, u), as the output from a black box computer model, 
does not have a closed-form expression, ∇F(u) can be 
approximated using the central finite difference

[∇F(u)]i ≈
F(u + hei)� F(u � hei)

2h , (6) 

where h > 0 is a small disturbance to the ith component 
of u , ei denotes a p × 1 vector with ith element being 
one and others zero.

One key advantage of using nonlinear optimization 
is that it can adaptively generate computer model data 
η(x, u). In other words, as u is updated through the iter-
ative GD process, we can run simulations to get η(x, u)
at the newly refined u . It allows us to get more informa-
tive data toward minimizing the empirical loss (or 
maximizing the likelihood).

4.2. Multiblock Parameter Calibration
The single-block parameter calibration presented in 
Section 4.1 treats all parameters equally using the entire 
data set. We propose a new block-wise calibration 
approach when some parameters are associated with a 
specific subset of the entire data set.

Recall that in the BEM application, we have three dis-
tinct groups of parameters, denoted by ug, u c, and uh 
in Table 1. The parameter set ug consists of global para-
meters so it should be globally employed with the 
entire year-long simulation. On the other hand, u c and 
uh include season-specific parameters, associated with 
only cooling-season and heating-season portions of the 
entire simulation, respectively. Let us generalize the 
problem structure, as illustrated in Figure 1. Consider 
that the entire parameter set u consists of B groups of 
parameters, that is, u � [u1, u2, : : : , uB], where u b ∈ Rpb 

denotes the bth group of parameters. For instance, in 
BEM, we have u1 � ug, u2 � u c, and u3 � uh with B�3. 
Suppose further that a parameter vector u b is associated 

with only a subset of entire data set for each b �
1, 2, : : : , B (Figure 1). These subsets are not necessarily 
disjoint.

With this problem structure, we calibrate u b using 
its corresponding portion of data set, that is, the bth 
data block. By using the right data block, it is expected 
to obtain more accurate estimates compared with the 
single-block calibration that does not differentiate the 
block-dependent heterogeneity. To account for the block 
dependency, we consider multiple likelihood functions, 
each associated with the bth block of data sets, as fol-
lows:

Lb(u b,σ2 |y(x)) �
Y

j∈I b

N (η(xj, u b; u�b),σ2), ∀b, (7) 

where I b is an index set in the bth block of the data set, 
associated with u b, and u�b represents the remaining 
parameters. η(xj, u b; u�b) is the computer model output 
at input xj when the bth block parameters are at u b and 
remaining parameters at u�b.

While I b does not have to be disjoint with other 
blocks, u b and u�b are disjoint. Then the corresponding 
log-likelihood function becomes

ℓb(u b,σ2 |y(x),u�b) ��
nb
2 log2π�nb

2 logσ2�
1

2σ2

X

j∈I b

(y(xj)

�η(xj,u b;u�b))
2, ∀b, (8) 

where nb � |I b | is the size of I b. To maximize the log- 
likelihood, we consider the corresponding empirical 
loss function as

Fb(u b; u�b) �
1
nb

X

j∈I b

(y(xj)� η(xj, u b; u�b))
2, ∀b, (9) 

and obtain the estimates for the bth block of parameters 
u b by

u ∗b � arg min
u b∈Θb

Fb(u b; u�b), ∀b: (10) 

Figure 1. Multiple Data Blocks 

Note. Here, the data include both physical process data (xj, y(xj)) and generated data (xj,η(xj, u)).
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We refer to the proposed block-wise calibration ap-
proach as multiblock calibration (shortly, M-BC) in the 
subsequent discussion.

It should be noted that the simulation output η(xj, u b;

u�b) could possibly depend on u�b, as well as u b, when 
the bth block of data overlaps with other blocks associ-
ated with some parameters in u�b. For instance, let us 
consider the cooling-season parameter u c. The simula-
tion output during the cooling season (March to Novem-
ber) also depends on the setting of global parameters ug. 
Also, during March to April when the cooling and heat-
ing seasons overlap, heating-season parameters also 
affect the energy consumption output during a part of 
the cooling season. Therefore, in solving (10), the result-
ing u ∗b may also depend on u�b. Our ultimate goal is to 
find u ∗b that minimizes Fb, while at the same time, other 
block parameters minimize their own loss functions. In 
the next section, we provide an iterative algorithm and 
its convergence properties under certain conditions.

5. Parameter Estimation and Convergence 
Properties in Multiblock Calibration

In this section, we propose a new algorithm to calibrate 
parameters in a block-wise manner. We also provide 
convergence guarantees for the algorithm under certain 
conditions. Finally, given convergence, we employ the 
MLE’s asymptotic properties and construct confidence 
intervals to quantify estimation uncertainties.

5.1. Multiblock Calibration Algorithm
Recall that existing studies typically pregenerate data 
and build emulators for η(·) using the generated data. 
This approach is not directly applicable to the multiblock 
parameter calibration problem. One may attempt to 
build B emulators, say, η̂1(x, u1; u�1), : : : , η̂B(x, uB; u�B), 
using each block of data and try to calibrate u b with 
η̂b(x, u b; u�b). However, as discussed earlier, the com-
puter model response at the bth block can be affected by 
the setting of u�b, making η̂b(·) a function of both u b and 
u�b. If one calibrates u b and u�b simultaneously using 
η̂b(x, u b; u�b), the resulting calibrated values might differ 
across multiple blocks. Furthermore, instead of generat-
ing data from a computer model at predefined design 
points, we want to generate computer model outputs 
more effectively so more informative computer model 
data can be used for the calibration purpose and directly 
use the data to calibrate parameters without building 
emulators.

To this end, we design a new algorithm to solve the 
block-wise calibration problem. The fundamental idea 
is to devise a block-wise optimization algorithm so that 
the parameters in different blocks can be calibrated 
with their own objective functions over iterations. Spe-
cifically, we propose cyclically optimizing one block of 
parameters each time while keeping the parameters in 

other blocks fixed at their most up-to-date values. For 
instance, in the BEM calibration, we have u1 � ug, u2 �

u c, and u3 � uh with B�3. We iteratively optimize ug 
that minimizes Fg(ug; u�g), whereas other parameters 
in u c and uh are fixed at their current iterates. Then we 
optimize u c for Fc(u c; u�c) with the previously opti-
mized ug and continue with a similar procedure for 
Fh(uh; u�h) with the previously optimized ug and u c. 
This procedure is repeated until prespecified stopping 
criteria are satisfied.

Let u k
b denote the iterate of u b after finishing the kth 

iteration for b � 1, 2, : : : , B. At the (k+ 1)th iteration, let 
Fb(u b; u k+1

�b ) in (9) denote the loss function for the bth 
block of parameters u b, given the remaining parameter 
iterates u k+1

�b . Without loss of generality, we optimize 
each block in an ascending order, starting from the first 
block, that is, b�1. Therefore, in optimizing u b that 
minimizes Fb(u b; u k+1

�b ), the remaining parameters be-
come u k+1

�b � [u
k+1
1 , : : : , u k+1

b�1, u k
b+1, : : : , u k

B]. Here, note that 
the parameters before the bth block are previously 
updated, whereas those after the bth block are not 
refined yet. In this scheme, the loss function for the bth 
block in (9) at the (k+ 1)th iteration can be written as

Fb(u b; u k+1
�b ) �

1
nb

X

j∈I b

(y(xj)� η(xj, u b; u k+1
�b ))

2
: (11) 

The computer model output η(·) is likely nonlinear, as 
most computer models consist of a set of complex 
mathematical functions. Hence, we consider nonlinear 
optimization methods to find u b that minimizes Fb(u b;

u k+1
�b ), given u k+1

�b . Among various optimization meth-
ods, we use the most commonly used method, which is 
GD. Our approach can be easily extended to other 
second-order optimization methods such as Newton’s 
method or quasi-Newton methods.

In minimizing Fb(u b; u k+1
�b ) over u b, we further con-

sider the inner iteration, given u k+1
�b . Here, the inner iter-

ation is for the GD-based parameter updates in each 
block, and the outer iteration implies the cycle for all 
blocks. Let u k,m

b denote the iterate of u b at the mth inner 
iteration of the outer (k+ 1)th iteration. We update u k,m

b 
by

u k,m+1
b � u k,m

b � α
k,m
b ∇Fb(u

k,m
b ; u k+1

�b ), (12) 

where αk,m
b > 0 is the step size, and the ith element of 

∇Fb(u
k,m
b ; u k+1

�b ) is

[∇Fb(u
k,m
b ; u k+1

�b )]b,i �
∂Fb(u b; u k+1

�b )

∂θb,i

�
�
�
�
�
θb,i�θk,m

b,i ,

(13) 

where θb,i is the ith parameter in u b for i � 1, 2, : : : , pb, 
with pb being the number of parameters in u b for b � 1, 
2, : : : , B. Because the loss functions have no mathematical 
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closed-form expressions due to the black box nature of 
the simulator, similar to (6), we use a finite-differencing 
to approximate the gradient for each loss function as fol-
lows:

∂Fb(u b; u k+1
�b )

∂θb,i

�
�
�
�
�
θb,i�θk,m

b,i

≈
Fb(u

k,m
b + heb,i; u k+1

�b )� Fb(u
k,m
b � heb,i; u k+1

�b )

2h , (14) 

where h > 0 is a small perturbation to the ith parameter 
of each u b and eb,i is a pb × 1 vector with its ith element 
being one and others zero.

We repeat the inner iteration for each block until 
some termination criteria are met. Once we obtain u b 

that minimizes the bth loss function Fb(u b; u k+1
�b ), 

denoted by u k+1
b , we move to the next (b+ 1)th block to 

minimize its loss function Fb+1(u b+1; u k+1
�(b+1)) over u b+1, 

given u k+1
�(b+1) � [u

k+1
1 , : : : , u k+1

b , u k
b+2, : : : , u k

B]. After we 
finish the cycle with all blocks, we set k � k+ 1 and 
repeat the procedure. We finish the iteration when either 
the norm of gradient of each loss function is less than a 
small tolerance τ1, the relative difference of loss function 
values is less than a small tolerance τ2, or the maximum 
number of iteration is larger than some value τ3. Algo-
rithm 1 summarizes the proposed M-BC procedure.

Algorithm 1 (Multiblock Calibration (M-BC)) 
1: Input: D � {y(xj), xj}

n
j�1 with an index set I b for 

each bth block of D, b � 1, 2, : : : , B
2: Initialization: u0 � (u0

1, u0
2, : : : , u0

B) and k← 0
3: while convergence criterion not met do
4: for b← 1 to B do
5: Set m← 1 and u k,m

b ← u k
b

6: while convergence criterion not met do
7: Run simulations for xj, ∀j ∈ I b, at (u k,m

b , u k+1
�b )

to obtain Fb(u
k,m
b ; u k+1

�b )

8: Run simulations for xj, ∀j ∈ I b, at (u k,m
b +

heb,i, u k+1
�b ) and (u k,m

b � heb,i, u k+1
�b ) to obtain 

Fb(u
k,m
b + heb,i; u k+1

�b ) and Fb(u
k,m
b � heb,i; u k+1

�b ), 
respectively

9: Calculate Gk,m
b � ∇Fb(u

k,m
b ; u k+1

�b ) using (13) 
and (14) and set a step size αk,m

b
10: Update u k,m+1

b ← u k,m
b � α

k,m
b Gk,m

b
11: Set m←m+ 1
12: end while
13: Set u k+1

b � u k,m
b

14: end for
15: Set k← k+ 1
16: end while
17: Output: u ∗ � (u k

1, u k
2, : : : , u k

B)

We would like to highlight that the proposed cyclic 
calibration approach is different from the block coordi-
nate descent (BCD) algorithm. The major difference is 

that our approach handles multiple objective functions, 
each of which is associated with its corresponding sub-
set of the data set. On the other hand, BCD considers a 
single objective function.

As discussed earlier, an important feature of our 
approach is that it adaptively generates computer model 
outputs during the calibration procedure, unlike existing 
approaches that use precollected samples. As the optimi-
zation proceeds, newer parameters that make the com-
puter model outputs closer to physical process responses 
are obtained. That is, once u k,m

b is updated to u k,m+1
b 

through the GD procedure in (12), we run the simulator 
at the refined u k,m+1

b to get data that leads to smaller loss. 
Through this iterative data generation procedure, more 
informative data can be produced toward minimizing 
the discrepancy between the computer model output 
and physical process response.

As a remark, in multiblock calibration one can ran-
domly choose the next block, but in this section, we 
consider the fixed ordering that proceeds in a cyclical 
way. In Section 6, we empirically compare the cyclic 
ordering with stochastic ordering. Additionally, we 
note that, depending on the problem structure, the 
order of blocks may matter. However, in our numerical 
examples in a wide range of settings, we obtain compa-
rable results in different orderings.

5.2. Convergence Analysis
This section presents the convergence properties when 
each loss function Fb, b � 1, 2, : : : , B, is a general noncon-
vex, strongly convex, or convex function. Although we 
use the standard analysis procedure of GD, the block- 
wise treatment with multiple loss functions poses sub-
stantial challenges in analyzing the convergence prop-
erties of the proposed M-BC approach. In each of the 
three settings, we impose conditions on Fb and possibly 
the iterates generated by Algorithm 1 to achieve certain 
convergence properties. In the special case where the 
number of blocks is equal to one, our results recover 
the standard results for GD. The detailed proofs of all 
lemma and theorems are available in the online 
appendix.

Throughout the convergence analysis, we use the 
notations summarized in Table 2. We understand that 
the notations are complex, mainly due to the double 
(inner and outer) iteration nature in M-BC. For ease of 
understanding, Figure 2 presents the essence of the 
notations. For the number of inner iterations, denoted 
by Mb(k), we consider the fixed number of inner itera-
tions, that is, Mb(k) �Mb, but the analysis can be 
extended to variable number of inner iterations. More-
over, we use a fixed step size αb for the bth block for 
b � 1, 2, : : : , B, but this could also be extended to using a 
backtracking line search.

In our analysis, we make the following assumption.
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Assumption 1. Let Fb be a continuously differentiable func-
tion in dom(Fb) for b � 1, 2, : : : , B. Assume that Fb has a block- 
wise Lipschitz continuous gradient with a Lipschitz constant 
Lb <∞, with respect to u b for any given u�b, that is, ‖∇Fb 
(u b; u�b)�∇Fb(u

′
b; u�b)‖2 ≤ Lb‖u b� u ′b‖2, ∀u b, u ′b ∈ R

pb . 
Furthermore, assume that Fb is bounded below so that the 
infimum of Fb, Finf

b , exists and Fb has at least one stationary 
point for all b.

We first show a descent lemma, a fundamental ingre-
dient for the convergence analysis. Lemma 1 shows 
that the function value Fb(u) decreases when the block 
parameter is updated from u k

b to u k+1
b with u k+1

�b fixed.

Lemma 1 (Descent Lemma). Suppose Assumption 1 holds 
with constants Lb for b � 1, 2, : : : , B. Let αb ∈ (0, 1=Lb] for all 
b. Then, for all k ≥ 0 and all b,

Fb(u
k+1
b ; u k+1

�b ) ≤ Fb(u
k
b; u k+1

�b )�
1
2αb

XMb

m�1
‖∇Fb(u

k,m
b ; u k+1

�b )‖
2
2:

(15) 

The previous result is analogous to that of GD. Namely, 
the progress made over a sequence of iterations (for 
M-BC, this is over the inner iterations) is proportional 
to the sum of the norms of the gradient squared. Using 

Table 2. Nomenclature for Convergence Analysis

Category Symbol Meaning

Superscript k The iteration number for the outer iteration.
m The iteration number for the inner iteration, i.e., m � 1, 2, : : : , Mb(k):
Mb(k) The number of inner iterations for the bth block at the kth outer iteration.
Mb Fixed number of Mb(k) regardless of the kth outer iteration.

Iterate uk ∈ Rp The iterate after all blocks are updated at the kth outer iteration, i.e., uk ≡ (uk
1, uk

2, : : : , uk
B).

u∗ ∈ Rp The unique global minimizer of Fb in the strongly convex case; a point at which the 
minimum of Fb is attained in the convex case, i.e., u∗ ≡ (u∗1, u∗2, : : : , u∗B).

uk
b ∈ R

pb The iterate of the bth block parameters after finishing the inner iteration of the bth 
block at the kth outer iteration.

u∗b ∈ R
pb The unique global minimizer of Fb given u∗�b in the strongly convex case; a point at 

which the minimum of Fb given u∗�b is attained in the convex case, i.e., u∗ ≡ (u∗b; u∗�b).
uk,m

b ∈ R
pb The iterate of the bth block parameter at the mth inner iteration of the (k+ 1)th outer 

iteration, given uk+1
�b . Note uk,1

b ≡ uk
b and uk,Mb+1

b ≡ uk+1
b .

uk,∗
b ∈ R

pb The unique global minimizer of Fb given uk+1
�b in the strongly convex case; a point at 

which the minimum of Fb given uk+1
�b is attained in the convex case.

uk
�b ∈ R

p�pb uk
�b ≡ [u

k
1, : : : , uk

b�1, uk�1
b+1 , : : : , uk�1

B ].
(uk

b; uk+1
�b ) ∈ R

p
(uk

b; uk+1
�b ) ≡ (u

k+1
1 , : : : , uk+1

b�1, uk
b, uk

b+1, : : : , uk
B). Note (uk

b; uk+1
�b ) � (u

k,1
b ; uk+1

�b ), where uk,1
b is the 

initial value of uk
b at the (k+ 1)th outer iteration with uk+1

�b being fixed.
(uk+1

b ; uk+1
�b ) ∈ R

p
(uk+1

b ; uk+1
�b ) ≡ (u

k+1
1 , : : : , uk+1

b�1, uk+1
b , uk

b+1, : : : , uk
B) with uk+1

�b being fixed. Note 
(uk+1

b ; uk+1
�b ) � (u

k,Mb+1
b ; uk+1

�b ), where uk,Mb+1
b is the final value of uk

b at the (k+ 1)th outer 
iteration with uk+1

�b being fixed.
(uk,m

b ; uk+1
�b ) ∈ R

p
(uk,m

b ; uk+1
�b ) ≡ (u

k+1
1 , : : : , uk+1

b�1, uk,m
b , uk

b+1, : : : , uk
B) with uk+1

�b being fixed.
(uk,∗

b ; uk+1
�b ) ∈ R

p (uk,∗
b ; uk+1

�b ) ≡ (u
k+1
1 , : : : , uk+1

b�1, uk,∗
b , uk

b+1, : : : , uk
B) with uk+1

�b being fixed.
Function Fb(u

k) ∈ R The function value of Fb evaluated at uk � (uk
1, uk

2, : : : , uk
B).

Fb(u
k
b; uk+1
�b ) ∈ R The function value of Fb evaluated at (uk

b; uk+1
�b ) to stress uk+1

�b is fixed.
Finf

b A lower bound on the function value of Fb.
Gradient ∇Fb(u

k
b; uk+1
�b ) ∈ R

pb The gradient of Fb evaluated at uk
b with uk+1

�b being fixed.

Figure 2. Notations at the (k + 1)th Outer Iteration 
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Lemma 1, we first analyze the convergence properties 
of M-BC on the general nonconvex case in Theorem 1.

Theorem 1 shows that under certain conditions, the 
iterate u k converges to a stationary point u ∗ as k→∞, 
that is, the norm of the gradient of all objective func-
tions vanishes in the limit.

Theorem 1 (General Nonconvex Case). Suppose Assump-
tion 1 holds. Furthermore, suppose that

Fb(u
k) ≥ Fb(u

k
b; u k+1

�b ),

Fb(u
k+1
b ; u k+1

�b ) ≥ Fb(u
k+1), (16) 

for all k ≥ 0 and b � 1, 2, : : : , B. Let αb ∈ (0, 1=Lb] for all b. 
Then, for all b,

lim
k→∞
‖∇Fb(u

k
b; u k+1

�b )‖2 � 0: (17) 

We make a few remarks about the conditions in (16). From 
Lemma 1, it follows that Fb(u

k
b; u k+1

�b ) ≥ Fb(u
k+1
b ; u k+1

�b ). 
Thus, Inequalities (16) imply that Fb(u

k) ≥ Fb(u
k+1), that 

is, the function value for the bth block decreases after all 
blocks have updated their associated parameters (across 
outer iterations). This seems to be a strong assumption in 
that the blocks do not compete over the course of optimi-
zation. However, this does not require that when every 
other block updates, the function value Fb of the bth block 
is nonincreasing. Instead, Fb is nonincreasing across outer 
iterations.

The result in Theorem 1 has an important implication. 
When we eventually find the stationary point u ∗b for the 
parameters in the bth block, other blocks’ parameters 
also converge to a stationary point u ∗�b as well and 
Fb(u

k
b; u k

�b) eventually converges to Fb(u
∗
b, u ∗�b), ∀b. It 

implies that even though we calibrate parameters in a 
block-wise manner, our approach obtains a concurrent 
convergence of the whole parameter vector; that is, u k �

(u k
1, u k

2, : : : , u k
B) converges to a stationary point u ∗ �

(u ∗1, u ∗2, : : : , u ∗B) under the noncompeting condition in 
(16) as k increases using M-BC. Accordingly, if Fbs are 
strongly convex, Fbs have a unique global minimizer u ∗. 
If Fbs are convex, Fbs have a global minimizer u ∗, ∀b.

We make the possible extension of conditions in (16) at 
the end of this section. Additionally, we relax the condi-
tions in (16) and prove the similar result in Corollary 1 by 
instead assuming the weaker technical condition in (18).

Corollary 1. Suppose Assumption 1 holds. Furthermore, 
suppose that the infinitely cumulative sum of the decreases 
of the function values during the inner iterations is finite, 
that is,

lim
K→∞

XK

k�0
{Fb(u

k
b; u k+1

�b )� Fb(u
k+1
b ; u k+1

�b )} < ∞, (18) 

for all b � 1, 2, : : : , B. Let αb ∈ (0, 1=Lb] for all b. Then, for all b,

lim
k→∞
‖∇Fb(u

k
b; u k+1

�b )‖2 � 0: (19) 

Corollary 1 states that as long as the sum of loss func-
tion decreases is finite, M-BC converges to a stationary 
point. It allows other block calibrations to increase the 
bth block loss, so the noncompeting condition in (16) is 
not needed. Thus, this result is more general than that 
in Theorem 1.

Next, we show the convergence rates for the strongly 
convex (Theorem 2) and convex (Theorem 3) cases.

Theorem 2 (Strongly Convex Case). Suppose Assumption 1
holds. Furthermore, assume that the function Fb is µb-strongly 
convex over u b for any fixed u�b for b � 1, 2, : : : , B. More-
over, suppose that

|Fb(u
k+1)�Fb(u

∗) | ≤c1{Fb(u
k+1
b ;u k+1

�b )�Fb(u
k,∗
b ;u k+1

�b )},

Fb(u
k
b;u k+1
�b )�Fb(u

k,∗
b ;u k+1

�b )≤c2 |Fb(u
k)�Fb(u

∗) | , (20) 

for all k ≥ 0 and b, where c1, c2 > 0 and c1c2 <
1

(1�αbµb)
Mb

. Let 
αb ∈ (0, 1=Lb] for all b. Then, for all k and b,

|Fb(u
k)� Fb(u

∗) | ≤ ρk |Fb(u
0)� Fb(u

∗) | , (21) 

where ρ � c1c2(1� αbµb)
Mb < 1.

Both conditions in (20) bound the optimality gap 
between the progress made in inner iterations versus 
the progress made in outer iterations. Because the 
objective function of each block is changing across 
outer iterations, the absolute value safeguards against 
the possibility of a current iterate having lower function 
value than the optimal solution. This is possible in our 
setting because the optimal solution of u ∗ � (u ∗b; u ∗�b) is 
defined as the point where all objectives are optimized 
and thus can potentially have a higher function value 
than the point (u k,∗

b ; u k
�b) has.

The conditions for Theorem 2 do not require that the 
function of the bth block is monotonically nonincreasing 
across outer iterations. That being said, these assump-
tions are relatively weak and can be tightened so that the 
result still shows the linear convergence rate at possibly a 
slower rate. We provide the corollary about this.

Corollary 2. Suppose Assumption 1 holds. Furthermore, 
assume that the function Fb is µb-strongly convex over u b 
for any fixed u�b for b � 1, 2, : : : , B. Moreover, suppose that

|Fb(u
k+1)�Fb(u

∗) | ≤c1{Fb(u
k+1
b ;u k+1

�b )�Fb(u
k,∗
b ;u k+1

�b )},

Fb(u
k
b;u k+1
�b )�Fb(u

k,∗
b ;u k+1

�b )≤c2 |Fb(u
k)�Fb(u

∗) | , (22) 

for all k ≥ 0 and b, where c1, c2 > 0 and c1c2 <
1

(1�αbµb)
Mb

. 
Additionally, suppose that

Fb(u
k) ≥ Fb(u

k
b; u k+1

�b ),

Fb(u
k+1
b ; u k+1

�b ) ≥ Fb(u
k+1), (23) 
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for all k and b. Let αb ∈ (0, 1=Lb] for all b. Then, for all k and b,

Fb(u
k)� Fb(u

∗) ≤ ρk{Fb(u
0)� Fb(u

∗)}, (24) 

where ρ � c1c2(1� αbµb)
Mb < 1.

Theorem 2 and Corollary 2 show linear convergence 
of the iterates generated by the M-BC algorithm, analo-
gous to that of GD (in the special case where b� 1, we 
recover the result of GD). Although convergence is 
derived across outer iterations, the rate of convergence 
depends on the number of inner iterations. Note that 
ρ � c1c2(1� αbµb)

Mb < 1; thus, the larger the number of 
inner iterations, the faster the rate (constant), or alterna-
tively, the larger the errors that are acceptable in (22) 
(larger constants c1 and c2). Compared with Theorem 2, 
Corollary 2 has somewhat stronger result that shows 
outer function value Fb(u

k) keep nonincreasing with 
the linear rate O(ρk).

Additionally, Theorem 3 shows the convergence rate 
for the convex case with certain assumptions.

Theorem 3 (Convex Case). Suppose Assumption 1 holds. 
Furthermore, assume that the function Fb is convex over u b 
for any fixed u�b for b � 1, 2, : : : , B. Moreover, suppose that

|Fb(u
k+1)�Fb(u

∗) | ≤ c1{Fb(u
k+1
b ;u k+1

�b )�Fb(u
k,∗
b ;u k+1

�b )},

‖u k+1
b �u k+1,∗

b ‖
2
2≤‖u

k+1
b �u k,∗

b ‖
2
2, (25) 

for all k ≥ 0 and b, where c1 > 0. Let αb ∈ (0, 1=Lb] for all b. 
Then, for all k ≥ 1 and b,

1
k
Xk

l�1
|Fb(u

l)� Fb(u
∗) | ≤

c1‖u
0
b � u0,∗

b ‖
2
2

2αbkMb
: (26) 

The first inequality in (25) is the same as the first condi-
tion in the strongly convex setting (see (20)). The second 
bounds the distance between the difference from the 
current iterate’s function value to the optimal solution’s 
function value across two outer iterations.

The first assumption in (25) is relatively weak and 
can be tightened so that the result still shows the sub-
linear convergence rate at possibly a slower rate. We 
provide the result about this in Corollary 3.

Corollary 3. Suppose Assumption 1 holds. Furthermore, 
assume that the function Fb is convex for b � 1, 2, : : : , B 
over u b for any fixed u�b. Moreover, assume that

|Fb(u
k+1)�Fb(u

∗) | ≤ c1{Fb(u
k+1
b ;u k+1

�b )�Fb(u
k,∗
b ;u k+1

�b )},

‖u k+1
b �u k+1,∗

b ‖
2
2≤‖u

k+1
b �u k,∗

b ‖
2
2, (27) 

for all k ≥ 0 and b, where c1 > 0. Additionally, assume that

Fb(u
k) ≥ Fb(u

k
b; u k+1

�b ),

Fb(u
k+1
b ; u k+1

�b ) ≥ Fb(u
k+1), (28) 

for all k and b. Let αb ∈ (0, 1=Lb] for all b. Then, for all k 
and b,

Fb(u
k)� Fb(u

∗) ≤
c1‖u

0
b � u0,∗

b ‖
2
2

2αbkMb
: (29) 

Theorem 3 and Corollary 3 show that in the convex set-
ting, the iterates generated by the M-BC algorithm con-
verge to a minimizer at a sublinear rate that depends 
on both the number of inner and outer iterations. 
Again, this is analogous to GD, and in the special case 
with b� 1, we recover the result of GD. Corollary 3 has 
somewhat stronger result that shows outer iterates u k 

keep nonincreasing with the sublinear rate O(1=(kMb)).
We make a comment about the number of iterations 

required for our algorithm to converge (i.e., number of 
inner iterations for a given block and number of outer 
iterations) and provide the computational complexity 
of M-BC. Of course, the number of iterations highly 
depends on the convergence criterion used in Algo-
rithm 1. To give a concrete example, consider the case of 
strongly convex functions, where the convergence crite-
rion in the inner loop is based on the optimality gap and 
suppose the inner and outer termination tolerances for 
relative differences are set as 0 < ɛouter ≤ ɛinner < 1. In 
this case, one can show that the number of inner itera-
tions required for each block is O(log(1=ɛinner)), and the 
total number of iterations is O(log

ɛinner
(1=ɛouter)). Thus, 

combining the time for data generation and for parame-
ter estimation, the computational complexity becomes 
O(n log

ɛinner
(1=ɛouter)), assuming that the simulation run-

ning time is proportional to the data size n. Similar 
results can be shown for the convex and nonconvex 
cases under appropriate termination conditions.

Finally, we make additional remarks about the con-
ditions in our analysis. Although the conditions we 
impose in deriving convergence properties, for exam-
ple, that the objective functions do not compete for all 
u b, may seem to be strong, we make these assumptions 
for the analysis of the M-BC algorithm to be analogous 
to that of GD. Furthermore, the conditions in our analy-
sis are less restrictive than that as they are over the 
course of the iterates generated by the algorithm, and 
not for the entire space. These conditions may not be 
verified except in relatively simple settings, as they 
require information about the optimal solution and/or 
problem specific parameters. In practice, after running 
the method on a specific problem, one can observe the 
trajectories to see if the conditions are satisfied. In our 
numerical examples in a wide range of settings and the 
BEM case study, we did not observe the situation that 
the noncompeting conditions were severely violated.

That being said, we conclude this section by discuss-
ing possible extensions of the proposed approach and 
convergence results. Suppose that in the general non-
convex case, instead of assuming (16), we can relax the 
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conditions as

Fb(u
k) + δk

b,1 ≥ Fb(u
k
b; u k+1

�b ),

Fb(u
k+1
b ; u k+1

�b ) ≥ Fb(u
k+1)� δk

b,2, (30) 

for all k ≥ 0 and b � 1, 2, : : : , B with δk
b,1 > 0 and δk

b,2 > 0. 
That is, we allow the objective function of the block to 
increase by some levels (δk

b,1 and δk
b,2) after calibrating 

parameters in other blocks. Under this assumption, if 
δk

b,1 � δ1 and δk
b,1 � δ2 for all b � 1, 2, : : : , B, then we con-

jecture that one can only show convergence to a neigh-
borhood of the solution that depends on δ1 and δ2. On 
the other hand, if δk

b,1 and δk
b,1 are summable, then a sim-

ilar result to Theorem 1 can be proven. Similarly, the 
conditions for the results in the strongly convex and 
convex cases can be relaxed, and under appropriate 
conditions, convergence (and rates) can be proven. Our 
BEM case study is Section 7 demonstrates that the non-
competing condition in (16) is satisfied. However, we 
plan to further investigate competing cases with (30) in 
our future study, as it may arise in other applications.

5.3. Asymptotic Properties of 
Calibration Parameters

When u b converges to a minimizer u ∗b for each b based 
on the results in the previous section, we obtain the 
MLE for the calibration parameters. Thus, we can enter-
tain its appealing theoretical properties such as consis-
tency and normality. From the likelihood function in 
(8), the consistency property says û b,MLE converges in 
probability to a true parameter vector, denoted by u b,0, 
as nb→∞, that is, û b,MLE→

p
u b,0 for each b. Further-

more, the asymptotic normality indicates that the 
estimator ffiffiffiffiffinb

√
(û b,MLE� u b,0) converges in distribution 

to a (multivariate) normal distribution N (0, I(u b,0)
�1
) as 

nb→∞, that is, ffiffiffiffiffinb
√
(û b,MLE � u b,0)→

d
N (0, I(u b,0)

�1
), 

where I(u b,0) is an expected Fisher information matrix. 
We use the MLE’s asymptotic properties to construct 
the confidence intervals of calibration parameters for 
uncertainty quantification.

Based on (8), the expected Fisher information matrix 
is represented by

I(u b,0) � �E
∂

2ℓ̃b(u b |y(x), u�b)

∂u2
b

" #�
�
�
�
�
u b�u b,0,

(31) 

where ℓ̃b(u b |y(x), u�b) is a log-likelihood function from 
a single observation for the bth block as

ℓ̃b(u b |y(x), u�b) ��
1
2 log 2π� 1

2 logσ2

�
1

2σ2 (y(x)� η(x,u b; u�b))
2
: (32) 

The expected Fisher information matrix can be approxi-
mated by its empirical counterpart,

I(u b,0) ≈ �
1
nb

X

j∈I b

∂
2ℓ̃b(u b |y(xj), u�b)

∂u2
b

�
�
�
�
�
u b�u b,0:

(33) 

Using the chain rule, we obtain the (i, i′)-entry of ∂2ℓ̃b 
(u b |y(xj), u�b)=∂u2

b as follows:

∂
2ℓ̃b(u b |y(xj), u�b)

∂θb,i∂θb,i′
��

1
σ2
∂η(xj, u b; u�b)

∂θb,i′

∂η(xj, u b; u�b)

∂θb,i

+
1
σ2 (y(xj)� η(xj, u b; u�b))

×
∂η2(xj, u b; u�b)

∂θb,i∂θb,i′
: (34) 

Here, because the first- and second-order partial deri-
vatives of η(xj, u b; u�b) are not analytically available, 
we obtain them numerically using the central finite dif-
ference (Abramowitz and Stegun 1972) as follows:
∂η(xj,u b;u�b)

∂u b,i
≈
η(xj,u b+heb,i;u�b)�η(xj,u b�heb,i;u�b)

2h ,

(35) 
∂

2η(xj,u b;u�b)

∂u2
b,i

≈
�η(xj,u b+2heb,i;u�b)+16η(xj,u b+heb,i;u�b)�30η(xj,u b;u�b)

12h2

+
16η(xj,u b�heb,i;u�b)�η(xj,u b�2heb,i;u�b)

12h2 , (36) 

∂
2η(xj,u b;u�b)

∂u b,i∂u b,i′

≈
η(xj,u b+heb,i+h′eb,i′ ;u�b)�η(xj,u b+heb,i�h′eb,i′ ;u�b)

4hh′

+
�η(xj,u b�heb,i+h′eb,i′ ;u�b)+η(xj,u b�heb,i�h′eb,i′ ;u�b)

4hh′
,

(37) 

for i, i′ � 1, 2, : : : , pb, where h, h′ > 0 are small perturba-
tion values. Furthermore, assuming the physical process 
data y(x) have the same variance σ2 across multiple 
blocks, we can find its MLE as

σ̂2
MLE �

1
n
Xn

j�1
(y(xj)� η(xj, û MLE))

2
: (38) 

Then we can obtain the asymptotic 100(1� α)% Wald 
confidence interval (CI) for each component of û b,MLE 
as follows:

θ̂b,MLE,i 6z1�α=2
1
ffiffiffiffiffinb
√

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I�1
ii (û b,MLE)

q

, i�1,2,:::,pb, (39) 

for b � 1, 2, : : : , B, z1�α=2 is a critical value of the normal 
distribution, and I�1

ii denotes the ith diagonal entry of 
the inverse of the Fisher information matrix I.
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5.4. Implementation Details
We provide guidance on defining the algorithmic para-
meters in M-BC (Algorithm 1). 
• αk,m

b > 0 (step size of the bth block at the (k+ 1)th outer 
iteration and mth inner iteration): The step size αk,m

b can be 
obtained by a backtracking line search, as described in Algo-
rithm 2. In the backtracking line search, the parameters can 
be set as α � 1, ρ � 1=2, c � 10�4 (or 1/2) (Boyd and Van-
denberghe 2004, Nocedal and Wright 2006). Note that, in 
principle, the step size αk,m

b could also be set to a sufficiently 
small constant or a diminishing sequence (e.g., 1=m).

Algorithm 2 (Backtracking Line Search) 
1: Choose: α > 0, ρ ∈ (0, 1), c ∈ (0, 1); Set α← α
2: while Fb(u

k,m
b � αGk,m

b ; u k+1
�b ) > Fb(u

k,m
b ; u k+1

�b )� cα‖∇Fb 

(u k,m
b ; u k+1

�b )‖
2
2 do

3: Update α← ρα
4: end while
5: Output: αk,m

b ← α
• h > 0 (bandwidth of finite-differencing when approx-

imating the gradient): The bandwidth h is set to 10�8, 
which is the square root of machine precision. In the set-
ting where exact function values can be computed, the 
choice of bandwidth is optimal up to constants (Moré and 
Wild 2012). In practice, we note that a sufficiently small 
value h works well in most cases (e.g., 10�4).
• τ1 > 0 (termination tolerance: norm of the gradi-

ent): We suggest that τ1 would be set as any sufficiently 
small value (e.g., 10�4).
• τ2 > 0 (termination tolerance: relative difference of 

loss function values): We suggest that τ2 would be also 
set as any sufficiently small value (e.g., 10�4).
• τ3 > 0 (termination tolerance: maximum iterations): 

The maximum number of iterations is used to safeguard the 
algorithm from running forever. If the algorithm reaches 
this value, it exits the loop. We suggest that τ3 would be set 
as sufficiently large value as long as computing resources 
are available. In our implementation, we set 2,000 for the 
outer loop and 1,000 for the inner loops of the algorithm.

6. Numerical Study
In this section, we evaluate the calibration accuracy of our 
proposed method in comparison with other alternatives 
through numerical studies. We also report the half-length 
of CI and coverage rate of each parameter to quantify esti-
mation uncertainties. All experiments, except those for 
alternative methods in Section 6.4, are conducted with 
MATLAB 2014a. For the alternative methods in Section 
6.4, R is used. All experiments use the following comput-
ing environment: 64-bit Windows OS with the Intel Xeon 
CPU E5-2697 @ 2.60-GHz processor and 128 GB RAM.
6.1. Problem Settings
We consider three numerical examples with different 
settings of the following physical processes and com-
puter models. 

(a) Example I (perfect computer model, block-wise 
convex loss functions) 

• Physical process

y(x) � I x < 2
5π

� �

exp x
10

� �
sin(x) + I 2

5π ≤ x < 8
5π

� �

exp x
10

� �
cos(x) + I x ≥ 8

5π
� �

exp x
10

� �
sin(x) + ε:

• Computer model

η(x, u) � I x < 2
5π

� �

exp x
10

� �
sin(x) + I 2

5π ≤ x < 8
5π

� �

exp x
10

� �
cos(x) + I x ≥ 8

5π
� �

exp x
10

� �
sin(x)

� I x < 2
5π

� �
(θ1 + 1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� x+ 1
√

2

� I
2
5π ≤ x < 4

5π
� �

(θ1 + 1)(θ2� 10)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� x+ 1
√

10

� I
4
5π ≤ x < 6

5π
� �

(θ2� 10)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� x+ 1
√

10

� I
6
5π ≤ x < 8

5π
� �

(θ2� 10)(θ3� 5)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� x+ 1
√

10

� I x ≥ 8
5π

� �
(θ3� 5)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� x+ 1
√

20 :

(b) Example II (perfect computer model, nonconvex 
loss functions) 

• Physical process

y(x) � I x < 2
5π

� �

exp x
10

� �
sin(x) + I 2

5π ≤ x < 8
5π

� �

exp x
10

� �
cos(x) + I x ≥ 8

5π
� �

exp x
10

� �
sin(x) + ε:

• Computer model

η(x, u) � I x < 2
5π

� �

exp x
10

� �
sin(x) + I 2

5π ≤ x < 8
5π

� �

exp x
10

� �
cos(x) + I x ≥ 8

5π
� �

exp x
10

� �
sin(x)

� 2I x < 2
5π

� �

(θ1 + 1) cos θ1x
10

� �

� I
2
5π ≤ x < 4

5π
� �

(θ1 + 1)(θ2 � 10)
2 cos θ2x

20

� �

� I
4
5π ≤ x < 6

5π
� �

θ2 � 10
2 cos θ2x

10

� �

� I
6
5π ≤ x < 8

5π
� �

(θ2 � 10)(θ3 � 5)
2 cos θ2x

20

� �

� I x ≥ 8
5π

� �
θ3 � 5

2 cos θ3x
10

� �

:
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(c) Example III (imperfect computer model, noncon-
vex loss functions) 

• Physical process

y(x) � exp x
10

� �
+ I(x < π) exp x

10

� �
sin(x)

+ I(x ≥ π) exp x
10

� �
cos(x) + ε:

• Computer model

η(x,u)�exp x
10

� �
+I(x<π)exp x

10

� �
sin(x)

+ I(x≥π)exp x
10

� �
cos(x)

� 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ2
1�θ1+1

q

sin θ1x
10

� �

+cos θ1x
10

� �� �

� I(x<π)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ2
2�θ2+1

q

2 sin θ2x
5

� �

+cos θ2x
5

� �� �

� I(x≥π)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ2
3�θ3+1

q

2 sin θ3x
10

� �

+cos θ3x
10

� �� �

:

In all examples, x ~ U(0, 2π) and ε ~ N (0, 0:01). In Exam-
ples I and II, the terms can be divided into three input 
domains x < 4π=5, 2π=5 ≤ x < 8π=5, and x ≥ 6π=5, respec-
tively, to represent different blocks (e.g., seasonality in 
BEM). Hence, θ1, θ2, and θ3 are the block parameters that 
need to be calibrated with data set associated with the 
first, second, and third blocks of data collected when 
x < 4π=5, 2π=5 ≤ x < 8π=5, and x ≥ 6π=5, respectively. 
These data blocks are not disjoint. For example, θ1 and 
θ2 together affect the computer model response for 
2π=5 ≤ x < 4π=5. Thus, one should not calibrate each θi 
separately. In Example III, the first term is globally used 
regardless of the input value. The second and third terms 
are used when x < π�and x ≥ π, respectively, which 
mimic the block dependency. Thus, θ1 should be cali-
brated with the entire data set, whereas the block para-
meters θ2 and θ3 need to be calibrated with the second 
and third blocks of data collected when x < π�and x ≥ π, 
respectively. Figure 3 illustrates the multiple data blocks 
that are used in Examples I, II, and III.

In Examples I and II, the computer models represent 
perfect computer models with the true parameters 
u � (θ1,θ2,θ3) � (�1, 10, 5), implying that the computer 
models produce exactly same simulation outcomes as the 
expected physical process response when their para-
meters are correctly calibrated. However, Example III 
exhibits an imperfect computer model where there are no 
true parameter values. Furthermore, the loss functions in 
Example I for three blocks, F1, F2, and F3, are block-wise 
convex; that is, the block loss functions are convex in 
terms of their associated parameters, given other para-
meters being fixed. On the other hand, Examples II and 
III generate nonconvex loss functions.

In implementing the proposed approach, we choose 
the step size (αk,m

b in (12)) using the backtracking line 
search in Algorithm 2. The termination condition is set 
as the norm of the gradient of the loss functions is less 
than 10�4 in both inner and outer iterations.

6.2. Implementation Results
We present the implementation results in comparison 
with the following two alternatives. 

(a) Hybrid-Block Calibration (H-BC): In this alterna-
tive, the computer model correctly simulates its response 
according to underlying block properties. Specifically, 
similar to M-BC, it considers the block dependency, 
using the corresponding subset of data for each block, 
rather than using the entire data. However, unlike M-BC 
that uses multiple loss functions, H-BC uses a single loss 
function in (5) and optimizes u � (θ1,θ2,θ3) altogether, 
namely,

u ← arg min
u∈Θ

1
n
Xn

j�1
(y(xj)� η(xj, u))2: (40) 

In solving (40), H-BC uses the correct block of data to 
compute the gradient of the loss function, but instead 
of exploiting a block-wise minimization, it updates the 
parameters all at once, that is, it updates θ1,θ2,θ3 alto-
gether at each GD iteration. 

(b) Single-Block Calibration (S-BC): This alternative 
ignores the block dependency of parameters. It treats 
all parameters as global parameters. Thus, when the 
computer model response is generated, it uses all 

Figure 3. Multiple Data Blocks for Examples I and II (Left) and Example III (Right) 
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terms, ignoring I(·) in the above examples. For exam-
ple, in Example III, when η(x, u) is simulated for x < π, 
it should use the first global term and term with I(x < π)
only, but it also uses the other term with I(x ≥ π). Then it 
uses the single loss function, shown in (5), to calibrate 
parameters. We include S-BC because in the BEM simu-
lation, seasonality can be ignored and one may blindly 
run the BEM simulator without correct scheduling.

When loss functions are convex, we can start from an 
arbitrarily selected starting point to attain a global min-
imum. In practice, however, we do not know the form 
of the loss functions, since the computer model is a 
black box. Thus, we use multiple initial points and 
select the best estimates that produce the smallest mean 
squared error (MSE) in a training set consisting of 1,000 
data samples. We then evaluate the performance using 
a test set with another 1,000 data samples.

Table 3 summarizes the average of calibrated para-
meters (and standard deviation) in the third to fifth col-
umns, obtained from 200 experiments, as well as MSEs 
in the test set in the last four columns. Each Fi repre-
sents the MSE at the ith data block, and Fall in the last 
column is overall MSE with all test data samples. 
Clearly, each calibrated value for θ1, θ2 and θ3 using 
M-BC in Examples I and II is closer to the true parame-
ter values u � (θ1,θ2,θ3) � (�1, 10, 5).

We summarize some observations from Table 3. 
• Because M-BC optimizes each block of parameters 

with the correct subset of data by minimizing the corre-
sponding loss functions, it provides the most accurate 
calibration results with the lowest MSEs.
• H-BC also uses the correct portion of data, so its 

MSEs tend to be smaller than those from S-BC. But, its 
calibrated values deviate from the true values in some 
cases, for example, θ2 and θ3 in Example I. It is because 
its single loss function for all three groups of parameters 
is quite complicated and highly nonconvex with intera-
tions between parameters (e.g., (θ1 + 1)(θ2� 10)). On 
the contrary, in the proposed M-BC, each loss function, 

given fixed parameters in other blocks, is simpler than 
the H-BC’s loss function. For instance, in Example I, even 
though η(·) is nonconvex over (θ1,θ2,θ3), the loss func-
tion for each parameter becomes block-wise convex. This 
local convexification helps the M-BC procedure find the 
solution more effectively.
• The different performance of H-BC in Examples I 

and II is related to the problem structure where different 
weights are assigned to each term. In Example I, for the 
term including I(x < 2π=5) in the computer model, we 
assigned 1/2, whereas we assigned 1/10 and 1/20 as 
weights, respectively, for the terms including I(2π=5 ≤
x < 8π=5) and I(x ≥ 8π=5). Thus, θ1 is the most influen-
tial parameter and the loss function changes rapidly as 
θ1 varies. With this problem structure, H-BC weighs θ1 
more, leading to the correct calibration of θ1 relative to 
θ2 and θ3. In Example II, the advantage of M-BC, com-
pared with that of H-BC, in terms of calibration accuracy, 
is less clear. We believe it is because the weights for each 
term are not substantially different. These results indicate 
that the performance of H-BC is sensitive to the problem 
structure. All things considered, M-BC achieves the best 
accuracy in all examples.
• Obviously, some of the parameter estimates from 

S-BC largely deviate from their true values in many 
cases, leading to larger loss values. Recall that S-BC 
ignores the block property (by ignoring I(·) terms in the 
computer models), whereas observational data from the 
physical process are collected in different blocks. This 
mismatch between the physical process responses and 
simulation outputs leads to poor calibration results with 
large MSEs.

M-BC also has a computational advantage over the 
two benchmarks, H-BC and S-BC, in general. This is 
mainly because M-BC calibrates each block of para-
meters using its associated data only, unlike H-BC and 
S-BC that update all parameters simultaneously. Table 
4 summarizes the average computation time for each 
run with Examples I, II, and III. Hereafter, the unit of 

Table 3. Results of Calibrated Parameter Values and MSE in Test Sets from 200 Experiments

Example Method

Calibrated parameter values MSE

θ1 θ2 θ3 F1 F2 F3 Fall

True value �1 10 5 — — — —
I M-BC 21.00 (0.01) 9.99 (0.02) 5.00 (0.03) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

H-BC �1.00 (0.02) 9.87 (0.21) 5.36 (1.86) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
S-BC 4.69 (0.83) �2.05 (1.03) 0.55 (1.37) 42.35 (8.31) 72.3 (5.68) 600.36 (123.71) 3.17 (0.08)

II M-BC 21.00 (0.00) 10.00 (0.01) 5.00 (0.01) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
H-BC 21.00 (0.00) 10.00 (0.01) 5.00 (0.01) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
S-BC �0.15 (1.64) 9.77 (1.61) 5.18 (4.16) 3.78 (16.94) 3.08 (5.59) 6.72 (26.02) 1.55 (0.35)

III M-BC 0.38 (0.00) 25.75 (0.44) 8.18 (0.05) 6.89 (0.67) 11.35 (1.25) 2.47 (0.16) 6.89 (0.67)
H-BC 0.40 (0.01) 7.70 (1.08) 7.96 (1.46) 18.99 (2.43) 35.03 (2.15) 3.07 (3.94) 18.99 (2.43)
S-BC 0.34 (0.15) 4.52 (2.62) 2.81 (4.23) 41.48 (12.33) 38.95 (7.38) 17.94 (11.08) 41.48 (12.33)

Notes. Fi is the empirical loss associated with ith block for i � 1, 2, 3. The values inside parentheses are standard deviations. Bold entries 
represent the best results in terms of calibration accuracy.
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computation time is seconds, and the average computa-
tion time for each run is reported. In Example I, S-BC 
slightly runs faster than M-BC, but recall that S-BC does 
not provide accurate results. Overall, M-BC is computa-
tionally more efficient than H-BC and S-BC. Further-
more, its running time is similar in all three examples, 
whereas the computation time of H-BC and S-BC varies 
significantly depending on the problem structure.

We additionally note that comparing computation 
performance in terms of number of iterations between 
the three methods is far from trivial. This is because 
M-BC has the double-loop structure with inner and 
outer iterations, whereas H-BC and S-BC does not have 
inner iterations. Moreover, another difficulty is related 
to the way the data are used by the methods. Specifi-
cally, as discussed in Section 5.2, assuming that the sim-
ulation running time is proportional to the data size n, 
computational complexity for M-BC can be expressed 
as O(n log

ɛinner
(1=ɛouter)) in the strongly convex case. 

The analogue for H-BC and S-BC (assuming a tolerance 
of ɛouter) can be expressed as O(n log(1=ɛouter)). While 
the terms in order notation look similar, hidden are 
condition number dependencies. For M-BC the depen-
dence is on 

P
bκb where κb is the condition number for 

each block problem, whereas for H-BC and S-BC the 
dependence is on κ, the condition number of the full 
problem. Thus, their computational complexity cannot 
be readily and easily compared.

6.3. Uncertainty Quantification
Table 5 summarizes the average half-length of 95% CI 
for each parameter and an empirical coverage rate from 

the 200 experiments in each method. Coverage rates 
show how often the derived confidence intervals 
include true parameter values. Ideally, they should be 
close to the nominal rate, 95% in this case. Because 
Example III represents an imperfect computer model 
where the true values do not exist, we do not report the 
coverage rates. Overall, the results suggest that M-BC 
provides its empirical coverage rates close to the nomi-
nal rate of 95%. On the contrary, the coverage rates of 
H-BC deviate from the nominal rates in some cases, for 
example, those for θ2 or θ3 in Example I. The low cover-
age rates in S-BC are related to inaccurate estimations 
shown in Table 3.

6.4. Performance Comparison with 
Other Methods

We compare the performance of M-BC with two com-
mon calibration approaches in the literature, including 
L2 calibration (Tuo and Wu 2015) and Bayesian calibra-
tion (Kennedy and O’Hagan 2001, Higdon et al. 2004).

We briefly explain the two benchmark approaches. 
More details are available in Tuo and Wu (2015), Kennedy 
and O’Hagan (2001), and Higdon et al. (2004). Given phys-
ical observations {y(xj), xj}

n
j�1, L2 calibration first obtains 

the estimated true physical process response ζ̂, where 
y(x) � ζ(x) + ɛ with an observation error ɛ, using kernel 
ridge regression (Wahba 1990) in the reproducing kernel 
Hilbert space. Similarly, using computer model responses 
{y(xj′ ),(xj′ , u j′ )}

n′
j′�1 generated at prespecified design points, 

it builds an emulator η̂(·, ·), often constructed by a GP 
(Santner et al. 2018), for the computer model. Then, u is 
calibrated by solving the following optimization problem:

û L2 � arg min
u∈Θ

‖ζ̂(·)� η̂(·,u)‖L2(Ω): (41) 

Next, the Bayesian calibration approach formulates 
the physical observation using the linear linkage model 
as y(x) � η(x, u ) + γ(x) + ɛ, where γ(x) represents the 
model discrepancy to correct a model bias between the 
physical process and the computer model responses, 
and ɛ is an observation error. Typically, η(x, u ) and γ(x)

Table 5. Uncertainty Quantification Results from 200 Experiments

Example Method

Average half-length of 95% CI Empirical coverage rate (%)

θ1 θ2 θ3 θ1 θ2 θ3

I M-BC 0.029 (0.001) 0.050 (0.005) 0.055 (0.008) 94.5 93.0 94.0
H-BC 0.030 (0.002) 0.045 (0.016) 0.064 (0.030) 96.0 81.0 77.6
S-BC 0.004 (0.001) 0.016 (0.017) 0.107 (0.052) 0.0 0.0 0.0

II M-BC 0.007 (0.000) 0.030 (0.002) 0.029 (0.001) 95.0 95.5 93.5
H-BC 0.007 (0.000) 0.030 (0.002) 0.030 (0.002) 95.0 95.0 95.5
S-BC 0.038 (0.011) 0.189 (0.150) 0.508 (0.727) 0.0 1.6 4.9

III M-BC 0.036 (0.015) 0.194 (0.162) 0.175 (0.208) N/A N/A N/A
H-BC 0.097 (0.231) 0.147 (0.121) 0.186 (0.172) N/A N/A N/A
S-BC 0.065 (0.061) 0.153 (0.150) 0.151 (0.093) N/A N/A N/A

Notes. Values inside parentheses are standard deviations. Bold entries represent the best results in terms of calibration accuracy. N/A, not 
applicable.

Table 4. Average Computation Time for Each Experiment

Example

Computation time (s)

M-BC H-BC S-BC

I 0.8 12.4 0.7
II 0.7 1.5 5.7
III 0.8 2.1 1.1

Note. Bold entries represent the best results in terms of calibration 
accuracy.
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are modeled by GPs, and the calibration parameters 
and other hyperparameters in mean vectors and covari-
ance functions are estimated from posterior distribu-
tions. To explore posterior distributions, Markov chain 
Monte Carlo (MCMC) is used.

We compare the performance between M-BC, L2 cali-
bration, and Bayesian calibration for the imperfect com-
puter model represented in Example III. For both M-BC 
and L2 calibration, we conduct 200 experiments with 
different training and test sets with 8 starting points. 
Due to heavy computation time, Bayesian calibration 
only runs 10 experiments with two prior specifications: 
uniform and Gaussian. Here, because the computer 
model is imperfect, we do not know the true parameter 
values. Instead, we compare MSE values in test sets for 
each block among three methods.

Table 6 reports the comparison results. With n� 50, 
M-BC achieves the best performance with much smal-
ler MSE values for all blocks, F1, F2, and F3. There is 
also a computational advantage when using M-BC, tak-
ing 0.05 seconds compared with 24.63 seconds for L2 
calibration and about 41,400 seconds for Bayesian cali-
bration, on average for each run. With a larger sample 
size of n� 200, we could not get Bayesian calibration 
results because it is computationally prohibitive with our 
computing resources (each experiment takes 5+ days). 
Although MSE values from L2 calibration decreases with 
the larger training data, M-BC still outperforms for all 
blocks. Meanwhile, computation time for L2 calibration 
grows very fast; it takes 50.46 seconds, whereas M-BC 
only runs for 0.76 seconds for each run. Clearly, it demon-
strates the advantage of M-BC in both performance 
metrics.

With the training size of n� 1,000, M-BC performs 
very well in terms of MSE values with smallest standard 
deviations of calibrated parameter values and MSEs. 
Small standard deviations indicate robustness and pre-
cision of the respective method. The computation time 
of L2 calibration and Bayesian calibration is excessive 

and they do not produce results in five days for each 
run. In summary, M-BC elicits the superiority of calibra-
tion accuracy and computational efficiency and scalabil-
ity compared with the two existing methods.

We make comments about the difficulty in theoreti-
cally comparing computational complexity between 
the M-BC and Bayesian approach. First, their data 
generation mechanisms are different. The Bayesian 
approach generates a fixed set of data from prespecified 
design points a priori, whereas M-BC collects computer 
response data on the fly. Next, in terms of computation 
after data are generated, in Bayesian calibration, the 
main computational issue is the numerical integration 
with respect to the posterior distribution of calibration 
parameters u and matrix inversions for each u value 
when using GPs in this numerical integration. If the 
number of observational data and computer experi-
ments are small, the matrix inversion can be done with 
O((n+ n′)3) in an iteration where n denotes the number 
of observational data and n′ the number of computer 
experiments (Kennedy and O’Hagan 2001). However, 
when the data size gets larger, the matrix inversion 
becomes challenging. Furthermore, it uses MCMC 
methods to explore posterior distributions. It is known 
that the MCMC computation generally depends on the 
number of parameters u , proposal distribution, and 
number of simulation runs (or iterations). Chains’ mix-
ing time to its stationary distribution also affect the total 
computational complexity of the Bayesian approach. 
On the contrary, the computational complexity for 
M-BC is O(n log

ɛinner
(1=ɛouter)) in the strongly convex 

case as discussed in Section 5.2. With these reasons, the 
direct comparison of the computational complexity 
between the M-BC and Bayesian approach does not 
seem to be adequate. Furthermore, the termination con-
ditions of the two approaches are different. However, 
their empirical performance shows the computational 
efficiency and scalability of M-BC over the Bayesian 
approach.

Table 6. Comparison Between M-BC, L2 Calibration, and Bayesian Calibration in Example III

Example Method n

Calibrated parameter values MSE

θ1 θ2 θ3 F1 F2 F3

III M-BC 50 0.38 (0.02) �3.29 (4.61) 8.22 (0.22) 10.20 (5.47) 18.09 (11.57) 2.61 (0.78)
L2 calibration 50 �0.08 (1.36) �7.12 (2.55) 7.80 (3.30) 59.78 (172.99) 50.06 (91.32) 70.71 (269.67)

Bayesian (uniform) 50 0.00 (0.00) �0.61 (1.93) 0.78 (2.48) 21.65 (13.52) 25.19 (13.15) 18.14 (17.13)
Bayesian (Gaussian) 50 �0.14 (0.43) �0.78 (2.45) 0.60 (1.88) 25.15 (12.56) 33.29 (15.48) 16.47 (12.67)

M-BC 200 0.38 (0.01) �4.80 (2.65) 7.71 (2.49) 7.99 (2.99) 13.51 (5.88) 2.42 (0.37)
L2 calibration 200 0.30 (0.18) �6.08 (2.16) 8.01 (0.71) 9.28 (11.24) 15.14 (19.93) 3.39 (3.38)

Bayesian (uniform/Gaussian) 200 — — — — — —
M-BC 1,000 0.38 (0.00) 25.75 (0.44) 8.18 (0.05) 6.89 (0.67) 11.35 (1.25) 2.47 (0.16)

L2 calibration 1,000 — — — — — —
Bayesian (uniform/Gaussian) 1,000 — — — — — —

Notes. The values inside parentheses are standard deviations, and — means that the running time of the algorithm is excessive so the results are 
not obtained. Bold entries represent the best results in terms of calibration accuracy.
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6.5. Performance Evaluation of M-BC Variants
We consider some variants of the proposed calibration 
approach. The first variant removes the inner iteration 
in M-BC. We refer to this variant as M-BC-V. Even with 
no inner iterations, it still updates parameters in a 
block-wise manner, but unlike M-BC, it does not per-
form the block-wise minimization. It may seem to be 
similar to H-BC. However, the main difference is that 
H-BC updates all parameters simultaneously at once, 
whereas M-BC-V sequentially updates each parameter 
block based on the most up-to-date information of 
other blocks. We also consider another variant using a 
random block selection. This algorithm is the same as 
M-BC-V but the block is selected randomly, instead of 
sequentially (or cyclically). This algorithm is referred to 
as M-BC-VS, with S standing for stochastic.

Table 7 summarizes calibration results from these 
variants. In Examples I and II, M-BC-V and M-BC-VS 
provide results comparable to the original M-BC. How-
ever, they yield inaccurate results in terms of MSE and 
unstable estimates with higher standard deviations in 
Example III. It appears that the block-wise minimiza-
tion (i.e., the inner iteration for each block) in M-BC 
brings appealing improvements in some cases and pro-
vides consistently better results.

Furthermore, we investigate whether the block order-
ing affects the estimation performance in M-BC. With 
three blocks, there are six pathways in the cyclic block 
ordering. We do not notice any significant differences in 
calibration results among the six pathways in all three 
examples. In the future, we plan to explore other vari-
ants and study their theoretical properties and empirical 
performance.

6.6. Scalability Analysis and Block 
Dominance Case

Additionally, we examine the scalability of the method in 
various settings such as the number of samples, the extent 
of block overlaps, and the number of blocks/parameters, 
using a newly designed problem structure. Because of the 
limited space, we omit the details of the problem structure 

and results but we discuss them in the online appendix. 
The results show that M-BC yields consistently good 
results in all settings in terms of calibration accuracy and 
uncertainty quantification. In particular, it demonstrates 
that the proposed method is suitable even for the pro-
blems with a significant data overlap. In the online supple-
mentary document, we further examine the performance 
of M-BC when block domination occurs. Our approach 
provides superior results in terms of both calibration accu-
racy and uncertainty quantification across different levels 
of block dominance.

7. Case Study: Building Energy Simulation
We evaluate the performance of our proposed ap-
proach in the BEM application. We use the hourly 
electrical energy consumption data and the simulation 
outputs obtained from the simulator, EnergyPlus 9.3.0 
(U.S. Department of Energy 2019) on a municipal build-
ing of Mueller, Austin in Texas. EnergyPlus is a widely 
used BEM simulator to model both energy consump-
tion, for heating, cooling, ventilation, lighting, plug, 
and process loads, and water use in buildings. Each 
run for year-long simulation takes about two minutes 
with a standard desktop computer.

Among a large number of parameters employed in 
EnergyPlus, we choose important parameters in the build-
ing energy use, based on domain knowledge and previous 
studies (Manfren et al. 2013, Chong et al. 2017), including 
lighting, ventilation, domestic hot water, window material 
(optical properties), and heating and cooling systems, as 
summarized in Table 1. In this case study, we let ug �

(θg,1,: : : ,θg,6)
T denote the vector of year-long global para-

meters and u c � (θc,1,: : : ,θc,4)
T and uh � (θh,1,: : : ,θh,3)

T, 
respectively, represent cooling- and heating-season parame-
ter vectors.

7.1. Implementation Results
We use the implementation setting similar to that in 
numerical examples. We terminate iterations when the 
relative difference between consecutive loss function 
values becomes smaller than a termination tolerance 10�4. 

Table 7. Results of M-BC Variants from 200 Experiments

Example Method

Calibrated parameter values MSE

θ1 θ2 θ3 F1 F2 F3 Fall

I M-BC �1.00 (0.01) 9.99 (0.02) 5.00 (0.03) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
M-BC-V �1.00 (0.02) 9.99 (0.02) 5.00 (0.03) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

M-BC-VS �1.00 (0.02) 10.00 (0.03) 5.00 (0.03) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
II M-BC �1.00 (0.00) 10.00 (0.01) 5.00 (0.01) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

M-BC-V �1.00 (0.00) 10.00 (0.01) 5.00 (0.01) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
M-BC-VS �1.00 (0.00) 10.00 (0.02) 5.00 (0.02) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

III M-BC 0.38 (0.00) �5.75 (0.44) 8.18 (0.05) 6.89 (0.67) 11.35 (1.25) 2.47 (0.16) 6.89 (0.67)
M-BC-V 0.36 (0.15) 0.12 (6.76) �0.99 (7.05) 15.03 (12.43) 23.33 (16.15) 6.80 (18.80) 15.03 (12.43)

M-BC-VS 0.36 (0.14) �0.92 (6.30) 1.83 (6.89) 13.15 (10.15) 21.31 (13.98) 5.07 (11.96) 13.15 (10.15)

Note. Values inside parentheses are standard deviations.
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We also use a small perturbation h � 10�4 in comput-
ing the gradient. The step size is decided using the 
backtracking line search.

Figure 4 shows the example of loss function values 
for each seasonal block from the proposed M-BC ap-
proach. Each dashed vertical line indicates the iteration 
index where the inner iteration terminates, and each 
solid line marks the iteration index for the outer itera-
tion. In the inner iteration, we first minimize the year- 
long loss Fg, followed by Fc and Fh sequentially. Each 
plot in Figure 4 illustrates how these loss functions 
change over iterations. Interestingly, Figure 4(a) shows 
that Fg decreases mostly when u c is updated. This is 
because the cooling season during March to November 
(Table 1) largely overlaps with the global block (Janu-
ary to December) in the studied Texas region. Similarly, 
the loss Fh during the heating season also decreases 
when u c is calibrated. It is because heating and cooling 
seasons overlap during three months (Table 1). Overall, 
all of the three loss values converge within a few outer 

iterations, which indicates the important role of inner 
iterations that calibrates each block of parameters.

Next, we compare the performance of M-BC with 
H-BC and S-BC. To initialize the parameters in imple-
menting these methods, we use five different sets of 
starting points obtained from the Latin hypercube sam-
pling (LHS). For each initial setting, we calibrate para-
meters using a training set consisting of 70% of data 
points and evaluate the performance with the test set 
from the remaining 30% of data points. Table 8 sum-
marizes the results from five different starting points, 
referred to as LHS 1 through LHS 5. In all cases, M-BC 
achieves the smallest global (Fg), cooling-season (Fc), 
and heating-season (Fh) loss values (MSEs). In some 
cases (e.g., with LHS 3 and 4), the performance of H-BC 
is comparable to M-BC, but M-BC outperforms H-BC 
in other initial settings. S-BC performs worse than 
M-BC and H-BC in most cases.

To further compare the approaches, we conduct 
additional experiments with 10 different training and 
test sets. Because we get the lowest MSEs with LHS 1 in 

Figure 4. (Color online) Examples of the Trajectories of Loss Function Values (MSEs) from M-BC 

Notes. (a) Fg. (b) Fc. (c) Fh.
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three methods in Table 8, we fix the starting point at the 
LHS 1 setting. Table 9 reports the average MSEs and 
standard deviations in the test sets from the 10 experi-
ments. M-BC achieves the lowest MSEs in all three 
blocks. Notably, it also consistently produces similar 
results in 10 experiments, resulting in the small stan-
dard deviations. On the contrary, the ranges of the final 
loss values in H-BC are much wider that those in 
M-BC, implying that its performance is sensitive to the 
choice of data. This result is consistent with what we 
have observed in Section 6 (see Example III results in 
Table 3).

7.2. Comparison with Bayesian 
Calibration Approach

We further compare our approach with Bayesian cali-
bration. To obtain posterior distributions, we exploit 
the No-U-Turn Sampler (NUTS), which is known to be 
useful for sampling from a high-dimensional posterior 
distribution as suggested in Chong and Menberg 
(2018). The NUTS is developed based on Hamiltonian 
Monte Carlo (HMC) that allows MCMC to converge 
faster in that it explores the high-dimensional posterior 
distribution by optimizing the tuning parameters such 
as a scaling factor and the number of leapfrog steps. 
More details are available in Chong and Menberg 
(2018). Even with NUTS, Bayesian calibration is com-
putationally intensive, as discussed in Section 2. With 
the computational resources available to us, it takes an 
unrealistically long time if we use hourly year-long 
data. Thus, we use weekly data in the Bayesian analysis 
as in Kristensen et al. (2017a). Even with weekly data, 
one experiment requires about five days to calibrate the 
BEM parameters.

We consider two prior specifications in Bayesian 
approach: noninformative priors with uniform distri-
butions and informative priors with Gaussian distribu-
tions, as suggested in Chong and Menberg (2018). In 
both prior settings, we use the settings in LHS 1 as the 
prior means for the parameters. We set the prior stan-
dard deviation as 0.2 in the informative prior settings, 
as in Chong and Menberg (2018).

Table 10 shows the MSEs in the test sets from 10 inde-
pendent experiments where we use the posterior means 
as the calibrated estimates. Compared with M-BC, Bayes-
ian calibration in both prior settings generates larger 
MSE values especially in the global and cooling-season 
blocks. The MSE from M-BC in the heating-season block 
is slightly larger than that of the Bayesian approach with 
the Gaussian prior. One possible reason is that the under-
lying heating-season loss is nonconvex and M-BC may 
attain the local minimum. Additionally, in the attempt to 
minimize all three losses simultaneously, calibrating the 
global and cooling-season parameters may negatively 
affect the loss function in the heating season, because the 
three data blocks overlap one another and global and 
cooling season blocks dominate the data portion.

To further investigate, Figure 5 shows the posterior 
distributions of one of the parameters, lightening level, 
when noninformative uniform and informative Gauss-
ian priors are used. It turns out that the resulting poste-
rior distribution when using the noninformative prior 
is still close to its prior distribution, showing large 
uncertainties. It implies that the calibrated parameter 
value from the posterior density does not deliver mean-
ingful information. Meanwhile, when the informative 
prior is used, the posterior distribution changes from 
its prior. Still, its MSEs are much larger in the global 
and cooling-season blocks (Table 10).

Table 8. MSEs with Five Different Initializations Using Latin Hypercube Design

Method

LHS 1 LHS 2 LHS 3 LHS 4 LHS 5

Fg Fc Fh Fg Fc Fh Fg Fc Fh Fg Fc Fh Fg Fc Fh

M-BC 0.29 0.34 0.16 0.35 0.39 0.23 0.33 0.36 0.22 0.33 0.39 0.18 0.31 0.36 0.18
H-BC 0.32 0.38 0.16 0.36 0.41 0.24 0.33 0.36 0.22 0.33 0.39 0.18 0.37 0.44 0.23
S-BC 0.36 0.37 0.25 0.40 0.40 0.32 0.40 0.42 0.32 0.36 0.37 0.26 0.39 0.40 0.29

Note. Bold entries represent the best results in terms of calibration accuracy.

Table 9. Comparison Results from 10 Experiments Under 
LHS 1 Initialization

Method

MSE

Fg Fc Fh

M-BC 0.29 (0.01) 0.34 (0.01) 0.16 (0.01)
H-BC 0.30 (0.02) 0.35 (0.03) 0.17 (0.01)
S-BC 0.35 (0.01) 0.37 (0.01) 0.24 (0.01)

Notes. Values inside parentheses are standard deviations. Bold entries 
represent the best results in terms of calibration accuracy.

Table 10. Comparison with the Bayesian Calibration 
Approach from 10 Experiments

Method (prior)

MSE

Fg Fc Fh

M-BC 0.29 (0.01) 0.34 (0.01) 0.16 (0.01)
Bayesian (uniform) 0.36 (0.01) 0.45 (0.01) 0.15 (0.00)
Bayesian (Gaussian) 0.33 (0.01) 0.40 (0.01) 0.14 (0.01)

Notes. Values inside parentheses are standard deviations. Bold entries 
represent the best results in terms of calibration accuracy.
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8. Conclusion
In this study, we present a new multiblock parameter cal-
ibration methodology when computer model parameters 
need to be calibrated using different, possibly nondis-
joint, subsets of data. We consider multiple loss functions, 
each for their associated block of parameters that use the 
corresponding data set. In addition to the block property, 
our approach is different from the existing literature that 
generates the computer model responses at preselected 
parameter settings and builds emulators using the fixed 
data set. Although being widely adopted, such tradi-
tional approach decouples the data generation stage and 
calibration stage. On the contrary, our approach adap-
tively runs the simulation at new parameter settings 
recommended by the nonlinear optimization procedure. 
As such, more instructive data are generated from the 
computer model, which makes the calibration procedure 
more effective.

Our implementation results in both numerical exam-
ples and BEM case study demonstrate that the discrep-
ancy between the physical process and the computer 
model outputs can be significantly reduced when the 
multiblock dependency of parameters is taken into con-
sideration. Furthermore, in our case study, the perfor-
mance of the proposed M-BC algorithm is more robust 
compared with the alternatives. We also construct CIs 
using asymptotic properties of ML estimators. Our 
approach yields more stable performance with nar-
rower CIs while maintaining empirical coverage rates 
close to the nominal rates compared with other meth-
ods. The comparison with the widely used Bayesian 
calibration elicits the advantage of our approach in 
terms of improved calibration accuracy.

In the future, we would like to extend the approach 
under more general settings, for example, competing cases 
and time-variant processes (Byon et al. 2016). Developing 
multitask learning and BO approaches that can handle 
overlapping data would also be a possible future research 
task. Additionally, we plan to use the well-calibrated BEM 
computer model to control building energy end use such 
as demand control (Jang et al. 2020, Li et al. 2020).
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