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Optimal budget allocation for stochastic simulation with importance sampling:
Exploration vs. replication

Young Myoung Koa and Eunshin Byonb

aDepartment of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea;
bDepartment of Industrial & Operations Engineering, University of Michigan, Ann Arbor, MI, USA

ABSTRACT
This article investigates a budget allocation problem for optimally running stochastic simulation
models with importance sampling in computer experiments. In particular, we consider a two-level
(or nested) simulation to estimate the expectation of the simulation output, where the first-level
draws random input samples and the second-level obtains the output given the input from the first-
level. The two-level simulation faces the trade-off in allocating the computational budgets: exploring
more inputs (exploration) or exploiting the stochastic response surface at a sampled point in more
detail (replication). We study an appropriate computational budget allocation strategy that strikes a
balance between exploration and replication to minimize the variance of the estimator when import-
ance sampling is employed at the first-level simulation. Our analysis suggests that exploration can be
beneficial than replication in many practical situations. We also conduct numerical experiments in a
wide range of settings and wind turbine case study to investigate the trade-off.

ARTICLE HISTORY
Received 10 August 2020
Accepted 29 June 2021

KEYWORDS
Computer experiment;
Monte Carlo sampling;
reliability; variance
reduction

1. Introduction

This article concerns a simulation budget allocation problem
when estimating an expectation of a random quantity that is a
function of random inputs and some unknown random effects.
The unknown random effects make the function generate ran-
dom outputs, given the realization of random inputs. Choe
et al. (2015) call such simulation models (or computer models)
the stochastic simulation models, in contrast with the determin-
istic simulation models where the randomness of the function
only comes from input variables.

Simulation with stochastic computer models basically takes
a two-level procedure; the first-level (referred to as outer
simulation) collects input samples from their distribution, and
the second-level (referred to as inner simulation) conducts
simulation runs, given inputs from the first-level. A case in
point of the two-level simulation is the wind turbine simula-
tion. The International Electrotechnical Commission (IEC)’s
design standard requires to assess the turbine reliability using
stochastic simulations at the design stage (International
Electrotechnical Commission, 2005). In response, the U.S.
Department of Energy’s National Renewable Energy
Laboratory (NREL) developed aeroelastic simulators to assist
wind turbine manufactures to design a reliable wind turbine
operating under various wind conditions (Jonkman and Buhl
Jr., 2005; Jonkman, 2009). In the reliability problem of wind
turbines, the input wind condition is sampled at the first-level
and then aeroelastic simulators generate stochastic load
responses at the sampled wind condition at the second-level.

The stochastic simulation model is also called nested
simulation, and it has been used to obtain financial portfolio
risk measurements such as Value-at-Risk (VaR) and
expected shortfall in the literature (Gordy and Juneja, 2010;
Lan et al., 2010; Broadie et al., 2011). VaR is the quantile
estimation of risk factors given the probability of loss. Its
expected shortfall estimates the tail expectation that quanti-
fies the actual loss amount when the large loss happens. In
this way it complements a VaR that ignores the loss distri-
bution beyond the quantile (Gordy and Juneja, 2010). The
risk factors are drawn in the outer step and the loss is eval-
uated using the inner step simulation.

When we have a limited budget on the simulation runs,
we need to optimize the allocation of the budget for both
levels to accurately estimate the output of interest. Choe
et al. (2015) provided a general framework for resource allo-
cation at both levels when the first-level uses importance
sampling. The objective of importance sampling is to take
more samples from the important input region to reduce
estimation variance with limited budgets. Choe et al. (2015)
considered the so-called stochastic black box model, where
the second-level simulation purely relies on a complicated
black box computer model, such as a wind turbine simula-
tor. In the two-level simulation framework, they jointly
derived the importance sampling density for the first-level
simulation and the optimal budget allocation for the
second-level simulation; the importance sampling density
affects the optimal budget allocation and vice versa. Their
approach is called stochastic importance sampling and has
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been extensively studied in wind energy applications (Choe
et al., 2015; Choe et al., 2016; Choe et al., 2018; Cao and
Choe, 2019; Pan et al., 2020; Pan et al., 2021).

Specifically, given the sample size M of the input random
variable at the first-level simulation and the total number
NT of simulations in the second-level, Choe et al. (2015)
derived the optimal importance sampling density to draw
the input Xi, i 2 f1, :::,Mg, and the optimal
budget allocation Ni in the second-level simulation for each
input Xi. However, the trade-off in deciding the input sam-
ple size M has not yet been studied. Large M would provide
better exploration of the response surface over the important
input region, whereas a small M would allow better quantifi-
cation of the variability of the stochastic response, that is, it
provides better exploitation at the sampled inputs by replica-
tion. To be clear, in this article, exploration implies drawing
more inputs with large M, whereas replication assigns more
budgets to replicate the stochastic response at a smaller
number of selected inputs.

In order to best utilize limited computational resources
and accurately estimate the output of interest, it is needed
to provide a guideline on how many input samples need to
be drawn and how many replications are needed for each
sampled input. We investigate the trade-off between the
exploration and replication and derive the theoretically opti-
mal input sample size M, given the limited budget NT. Our
analysis shows that setting the input sample size to be the
same as the total budget, that is, M ¼ NT, is optimal when
the positive integer restriction is not imposed on the budget
values (Ni values) in the second-level simulations. This result
implies that the exploration is better than replication.
However, as the theoretical results do not account for the
integer requirement, the budget value should be rounded to
its nearest positive integer in practice. Therefore, with M ¼
NT, Ni should be one in practical implementation. We the-
oretically prove that the variance with the theoretical opti-
mal allocation (that takes real-valued Ni values without
rounding) is smaller than the variance with the allocation
after rounding (i.e., Ni ¼ 1). Our implementation results
also suggest that rounding to Ni ¼ 1 could lead to a non-
negligible increase in the variance.

Therefore, with the integer condition on the budgets, the
optimal input sample size M should lie between one and
NT, balancing exploration and replication. However, optimal
M depends on the problem structure and is hard to obtain
analytically or empirically. Having the fact that M ¼ NT

provides the theoretically optimal allocation, we consider
another estimator that is designed to purely explore the
input area without replicating the stochastic response. We
refer to this estimator as the exploration-only estimator.
This estimator allows only one simulation run in the
second-level at each input drawn at the first-level. We prove
that the theoretical variance of the exploration-only estima-
tor is smaller than that of the original optimal estimator
with rounding. We also empirically show that the explor-
ation-only estimator provides consistently good performance
in numerical examples and wind turbine case study.

Overall the contribution of this article can be summar-
ized as follows:

� We prove that under the limited budget NT, more first-
level simulation runs (i.e., more exploration) theoretically
reduces the variance of the estimator when imposing no
integer constraints on the second-level budget values.

� We show that rounding the budget values loses optimal-
ity. That is, the resulting allocation is not optimal any-
more when the practical implementation requires us to
round the real-valued theoretically optimal allocation to
the nearest natural numbers.

� We analytically prove that the exploration-only estimator
has a smaller variance than the implementable version of
the theoretically optimal estimator with rounding.

� Based on the theoretical analysis and empirical results,
we show that the full exploration strategy provides a
robust solution for the two-level simulation combined
with importance sampling at the first-level.

The organization of this article is as follows: Section 2
reviews relevant studies in the two-level simulation and statis-
tical literature. Section 3 describes the problem of interest.
Section 4 studies the optimal resource allocation and its prac-
tical issues. Section 5 confirms the theoretical results using
numerical examples and the wind turbine case study. Section 6
makes concluding remarks and discusses future work.

2. Literature review

Estimation and inference of systems using stochastic com-
puter models have gained popularity recently. For computer
models whose run-time is not negligible, several studies
investigate the resource allocation problems in different con-
texts to understand systems better with limited computa-
tional budgets. In the statistical literature, adaptive sampling
strategies for building accurate surrogate models that emu-
late stochastic computer models have been actively studied.
The goal of these metamodeling studies is to obtain high
quality metamodels by investigating the trade-off between
exploration and replication. Sinha and Wiens (2002) develop
a sequential design scheme for a nonlinear parametric
regression model as a surrogate, when the fitted model is
possibly incorrect. Recently, several studies develop a
Gaussian Process (GP) as a surrogate model of a computa-
tionally expensive computer model (Wang et al., 2020) and
provide adaptive sampling approaches that sequentially
determine design points in order to build an accurate GP
emulator. Based on a Bayesian tree-based GP, Gramacy and
Lee (2009) combine the classic design of experiments
method with the active learning approach and propose a
new adaptive sampling design strategy in supercomputer
experiments. Binois et al. (2019) further generalize the
approach and show that replication can be more beneficial,
especially for heteroscedastic systems. They sequentially find
a design point that minimizes the predictive uncertainty
measured by the Integrated Mean Squared Error (IMSE).

882 Y. M. KO AND E. BYON



Ankenman et al. (2010) extend the deterministic kriging
method to the stochastic kriging method. At each design
point, they derive the optimal number of replications for
minimizing IMSE, which is proportional to the standard
deviation of the intrinsic variance (and the square root of a
function of the extrinsic covariance). Wang and Haaland
(2019) also demonstrate how replication could help signal
isolation in stochastic kriging. Xiong et al. (2013) present a
sequential design scheme when both high-accuracy and low-
accuracy computer models are available. In Goetz et al.
(2018), active sampling schemes are presented to build a
non-parametric tree-based metamodel. The primary object-
ive of these surrogate studies is to build a globally accurate
emulator over the entire input space. Although some of
these studies investigate the trade-off between exploration
and replication, their focus is to estimate the predictive dis-
tribution YjX, where Y denotes the simulation output and
X is a design point (not random variable).

In financial risk analysis, given the portfolio (the first-level),
computational budget allocation (the second-level allocation) to
each scenario is the focus of several studies (Gordy and Juneja,
2010; Broadie et al., 2011). In these studies, the first-level simu-
lation usually assumes a predetermined distribution (portfolio)
and mostly the second-level simulation decides the optimal
budget allocation. Broadie et al. (2011) propose a sequential
approach that allocates more simulation budget to the inner
simulation of the outer scenarios located close to the bound-
ary of the tail probability, i.e., close to c for the estimator of
PðL > cÞ, using the optimization problem that maximizes the
probability of a sign change. For the resource allocation at
both levels, Gordy and Juneja (2010) formulate an optimiza-
tion problem that determines the first and second-level budg-
ets to minimize the Mean Squared Error (MSE) of the
estimator of risk measurements. Although they investigate the
number of total outer and inner simulation numbers, their
analysis focuses on the second-level budget allocation. They
also do not consider the sampling distribution of input varia-
bles, such as importance sampling.

The trade-off between exploration and the replication
problem has also been studied in the context of data-driven
optimization. Following the increased popularity of GPs,
Bayesian optimization has gained attention in the literature
as one of the black box optimization techniques, typically
when the objective function is continuous (Mockus, 1989;
Snoek et al., 2012). Bayesian optimization consists of two
major components: a GP for modeling an objective function
over a solution (or design) space and an acquisition function
to choose the next design point (Frazier, 2018). It updates
the posterior probability on the objective function using all
available data and chooses the next sample point that maxi-
mizes the acquisition function. Acquisition functions,
including the well-known expected improvement, are
designed to explore new design points with high uncertainty
while exploiting the estimated objective value.

Similarly, adaptive learning has been actively studied in
multi-armed bandits in order to solve discrete sequential
optimization problems (Gittins and Jones, 1979). One of the
popular algorithms is Thomson sampling (Thompson, 1933;

Chapelle and Li, 2011). Similar to Bayesian optimization,
Thomson sampling updates the posterior and chooses the next
action using the posterior. Multi-arm bandits have been
applied in a wide range of online decision problems, such as
revenue management, Internet advertising, recommendation
systems, and hyperparameter tuning (Russo et al., 2018). These
optimization studies mainly focus on finding the best solution
that optimizes the objective function, which is different from
the problem context considered in this study.

In the aforementioned studies, inputs at the first-level are
considered as design points or decision variables (not random
variables), so the first-level budget allocation is not taken into
consideration in general. One of the popular methods for the
optimal budget allocation at the first-level is importance sam-
pling. Most importance sampling studies in the literature con-
sider deterministic computer models, so it only aims to
optimize the first-level simulation. For example, Glynn and
Iglehart (1989) study importance sampling in the simulation of
stochastic processes. Glasserman et al. (2000) apply importance
sampling to estimate the VaR in financial risk analysis.

In summary, existing studies, by and large, focus on the
resource allocation at either first- or second-level simulation.
This article investigates the optimal resource allocation at
both levels in the importance sampling framework.

3. Problem description

Problems involving nested simulation estimate the expect-
ation of a random variable. For example, estimating a tail
probability – one of the popular topics in reliability analysis
– can be regarded as estimating the expectation of an indi-
cator function. In this study, we state the problem in a gen-
eral form. Let X and Y denote random variables for the
simulation input and output, respectively. Suppose we want
to estimate the expectation of a random variable Z, i.e.,
E½Z�, where Z is a function of Y. For the estimation of a tail
probability, we can set Z ¼ IðY > lÞ, so that E½Z� becomes
the tail probability PðY > lÞ: Then we can estimate E½Z�
using the law of total expectation as

E½Z� ¼ E E ZjX½ �½ �: (3.1)

To estimate E½Z� in the two-level simulation framework, the
first-level is to sample the input data X and given the sampled
X, the second-level is to conduct the stochastic simulation and
get Y (or Z). Broadly speaking, there are two major approaches
to estimate E½Z�: sampling-based estimation and statistical
surrogate-based estimation. In this study we take the former
approach. Let s(x) denote the conditional expectation, i.e.,
sðxÞ ¼ E ZjX ¼ x½ �: Estimating s(x) is important to determine
the quality of the estimator of E½Z� in (3.1). Thus, we would
like to estimate s(x) accurately in an important input region.
This is the fundamental idea of importance sampling or vari-
ance reduction in a broader sense.

Let Ẑ denote an estimator of E½Z� and ŝðxÞ be an
unbiased estimator of s(x). Note that in the surrogate-based
approach, biased estimators can be considered for ŝðxÞ and
a good estimator is chosen with measures such as MSE or
IMSE (Gordy and Juneja, 2010; Lan et al., 2010; Broadie
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et al., 2011; Binois et al., 2019). However, when the estima-
tion is made with the sampling-based procedure, unbiased
estimators are typically employed. In particular, in the
importance sampling literature, most studies limit their ana-
lysis to unbiased estimators (Glynn and Iglehart, 1989;
Glasserman et al., 1999). For example, to obtain ŝð�Þ, we
can use the sample average of multiple replicates.

Importance sampling draws an input random sample of
size M, i.e., X1, :::,XM, from a biased density q, instead of
drawing inputs from their original distribution F (with dens-
ity f). At each sampled Xi, we run simulator Ni times. With
the limited total simulation budget of NT, we define an esti-

mator Ẑ as follows. For given M> 0 and NT > 0,

Ẑ � 1
M

XM
i¼1

1
Ni

XNi

j¼1

ŝjðXiÞ f ðXiÞ
qðXiÞ ,

NT ¼
XM
i¼1

Ni,

(3.2)

where ŝjð�Þ is the jth replication of ŝð�Þ, qð�Þ is an importance
sampling density, NT is the total simulation budget, and Ni

is the allocated second-level simulation budget for Xi. We
assume that q(x) ¼ 0 implies ŝðxÞf ðxÞ ¼ 0 for all x so that

Ẑ becomes an unbiased estimator of E½Z�: The proof of the

unbiasedness of Ẑ is available in the online supplement.
In many applications, the cost of the first-level simulation

is cheap or negligible, whereas the second-level simulation
cost is expensive (Sun et al., 2011; Choe et al., 2015). To put
this in our problem context, drawing Xi from qð�Þ (the first-
level simulation) is negligible, but running the black box
computer model to obtain ŝjð�Þ (the second-level simulation)
is computationally intensive. The simulation budget, there-
fore, applies to the second-level simulation; the total budget
NT is the sum of Ni for i 2 f1, :::,Mg:

When designing an estimator with a budget constraint, the
performance of an estimator is measured by minimizing the
MSE (Gordy and Juneja, 2010; Lan et al., 2010; Broadie et al.,
2011) or variance (Glasserman et al., 2000; Choe et al., 2015;
Choe et al., 2016; Pan et al., 2020; Pan et al., 2021). In this
study, we assume the unbiasedness of ŝðxÞ: Then, minimizing
variance becomes the same as minimizing the MSE. Given the
limited budget NT, we study the optimal balance between
exploration and replication. With larger M, we sample more
inputs, allowing more exploration. On the other hand, smaller
M, which leads to larger Ni values, puts more efforts for
exploitation. We derive the theoretically optimal sample size M
and budget allocation Ni for i 2 f1, :::,Mg that can strike a
balance to minimize the variance.

4. Optimal budget allocation

In Section 4.1 we revisit and generalize the method in Choe
et al. (2015) for the optimal allocation when M and NT are
both given. Then, the optimal M, given NT, are derived in
Section 4.2. Section 4.3 explains the rounding issue of the
budget allocation Ni for i 2 f1, :::,Mg and investigates its
effects on the optimality.

4.1. Theoretically optimal budget allocation given M

This section derives the optimal budget allocation for Ni for
i 2 f1, :::,Mg, when the input sample size M is given.
Building on the results in this section, we derive the optimal
M and Ni in Section 4.2. We first review the results in Choe
et al. (2015), where the two-level simulation is used for reli-
ability analysis. Then we generalize the results to estimate
an expectation of a random quantity in (3.2).

Choe et al. (2015) derived the theoretically optimal import-
ance sampling density and the budget allocation for the estima-
tion of the tail probability when M is given. They considered a
tail probability estimator, called P̂SIS1, as follows:

P̂SIS1 ¼ 1
M

XM
i¼1

P̂ðY > ljXiÞ f ðXiÞ
qðXiÞ

¼ 1
M

XM
i¼1

1
Ni

XNi

j¼1

I YðiÞ
j > l

� � f ðXiÞ
qðXiÞ ,

(4.1)

where Ið�Þ denotes an indicator function and YðiÞ
j is the jth

replication of the simulation output, given Xi.
Given the importance sampling density qð�Þ, Lemma 4.1

derives the optimal budget allocation Ni in terms of qð�Þ
that minimizes Var½P̂SIS1� in (4.1):

Lemma 4.1 (Choe et al. (2015)). For a given qð�Þ in (4.1),
the optimal budget allocation Ni for i 2 f1, :::,Mg for mini-
mizing Var½P̂SIS1� is given by

Ni ¼ NT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðxiÞð1� sðxiÞÞ

p
f ðxiÞ=qðxiÞPM

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðxjÞð1� sðxjÞÞ

p
f ðxjÞ=qðxjÞ

,

where s(x) denote the conditional tail probability, that
is, sðxÞ ¼ PðY > ljX ¼ xÞ:

Using the result of Lemma 4.1, Theorem 4.2 jointly optimizes
the importance sampling density and the budget allocation for
minimizing Var½P̂SIS1�:
Theorem 4.2 (Choe et al. (2015)). Given the estimator
P̂SIS1, the optimal importance sampling density qSIS1ð�Þ and
budget allocation Ni for i 2 f1, :::,Mg for minimizing
Var½P̂SIS1� are

qSIS1ðxÞ ¼ 1
Cq1

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NT

sðxÞð1� sðxÞÞ þ sðxÞ2
r

,

Ni ¼ NT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NTð1�sðxiÞÞ

1þðNT�1ÞsðxiÞ
q

PM
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NTð1�sðxjÞÞ

1þðNT�1ÞsðxjÞ
q , for i 2 f1, :::,Mg,

where Cq1 is a normalizing constant and sðxÞ ¼ PðY >

ljX ¼ xÞ:
We can generalize the result of Choe et al. (2015) to the

estimation of the expectation of a random variable Ẑ in
(3.2). Lemma 4.3 and Theorem 4.4 provide the extension of
Lemma 4.1 and Theorem 4.2, respectively. We omit the
proofs of Lemma 4.3 and Theorem 4.4, because they can be
easily obtained by extending the proofs of Lemma 4.1 and
Theorem 4.2.
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Lemma 4.3. For the estimator Ẑ of E½Z� in (3.2), given an
importance sampling density qð�Þ, the optimal budget alloca-
tion Ni for i 2 f1, :::,Mg for minimizing Var½Ẑ� is

Ni ¼ NT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ŝðxiÞ½ �p

f ðxiÞ=qðxiÞPM
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ŝðxjÞ

� �q
f ðxjÞ=qðxjÞ

: (4.2)

Theorem 4.4. Provided the estimator Ẑ of E½Z� in (3.2), the
optimal importance sampling density q�ð�Þ and the budget allo-
cation Ni for i 2 f1, :::,Mg for minimizing Var½Ẑ� are given by

q�ðxÞ ¼ 1
Cq�

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NT

Var ŝðxÞ½ � þ E ŝðxÞ½ �2
r

, (4.3)

Ni ¼ NT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ŝðxiÞ½ �p

f ðxiÞ=q�ðxiÞPM
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ŝðxjÞ

� �q
f ðxjÞ=q�ðxjÞ

¼ NT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NTVar ŝðxiÞ½ �

Var ŝðxiÞ½ �þNTE ŝðxiÞ½ �2
q

PM
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NTVar ŝðxjÞ½ �

Var ŝðxjÞ½ �þNTE ŝðxjÞ½ �2
r , (4.4)

where Cq� is a normalizing constant.

It should be noted that in this importance sampling
scheme, inputs with larger E½̂sðxÞ� and Var½̂sðxÞ� are sampled
from q�ðxÞ in (4.3). Furthermore, more budgets are allotted
to the inputs with larger variance in (4.4), if E½̂sðxÞ� is the
same. Now we have the optimal importance sampling dens-
ity q�ð�Þ and the corresponding budget allocation Ni for i 2
f1, :::,Mg when the sample size M is given. We, however,
still need to find the optimal M for minimizing Var½Ẑ�:
Choe et al. (2015) provided numerical results for choosing
M using different M=NT ratios and discussed that the result
is not sensitive to the ratio. The following section will theor-
etically investigate how different M values affect Var½Ẑ�:

4.2. Optimal sample size determination

In this section, we derive the optimal sample size M when the
positive integer constraint is not imposed on the budget alloca-
tion. Note that the variance of Ẑ can be expressed as follows:

Var Ẑ½ � ¼ Var
1
M

XM
i¼1

1
Ni

XNi

j¼1

ŝjðXiÞ f ðXiÞ
qðXiÞ

2
4

3
5

¼ 1
M2

Varq E
XM
i¼1

1
Ni

XNi

j¼1

ŝjðXiÞ f ðXiÞ
qðXiÞ jX

2
4

3
5

2
4

3
5

2
4

þEq Var
XM
i¼1

1
Ni

XNi

j¼1

ŝ jðXiÞ f ðXiÞ
qðXiÞ jX

2
4

3
5

2
4

3
5
3
5

¼ 1
M

Varq E ŝðX1ÞjX½ � f ðX1Þ
qðX1Þ

� �

þ 1
M2

Eq
XM
i¼1

1
Ni

Var ŝðXiÞjX½ � f ðXiÞ2
qðXiÞ2

" #
:

(4.5)

We plug the optimal budget allocation in (4.2), given M,
into (4.5) to obtain

Var Ẑ½ � ¼ 1
MNT

Ef Var ŝðXÞjX½ � f ðXÞ
qðXÞ

� ��

þðM � 1ÞEf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ŝðXÞjX½ �

ph i2�

þ 1
M

Varq E ŝðXÞjX½ � f ðXÞ
qðXÞ

� �

¼ 1
MNT

j1 þ ðM � 1Þj2½ � þ 1
M

j3,

(4.6)

where we define

j1 � Ef Var ŝðXÞjX½ � f ðXÞ
qðXÞ

� �
, j2 � Ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ŝðXÞjX½ �

ph i2
,

j3 � Varq E ŝðXÞjX½ � f ðXÞ
qðXÞ

� �
:

The detailed derivation of (4.6) is available in the online
supplement. We note that j1, j2, and j3 are strictly positive
constants due to the randomness of X and the unknown

randomness in ŝð�Þ: Theorem 4.5 shows that Var½Ẑ� is
decreasing over M for a sufficiently large NT.

Theorem 4.5. There exists N�
T 2 N such that for all NT �

N�
T ,Var½Ẑ� decreases in M; M¼NT is the optimal sample size

for NT � N�
T. Furthermore, if f ðxÞ ¼ qðxÞ,Var½Ẑ� decreases

in M for all NT 2 N:

Proof. Taking the derivative of Var½Ẑ� in (4.6) with respect
to M, we get

d
dM

Var Ẑ½ � ¼ j2 � j1 � NTj3
M2NT

: (4.7)

Since j1, j2, and j3 are positive constants, the derivative is either

positive or negative for a given NT. Then, we can find N�
T ¼

minfNT : d
M Var½Ẑ� < 0g and d

dM Var½Ẑ� < 0 for NT � N�
T :

If f ðxÞ ¼ qðxÞ, we obtain j2 	 j1 by Jensen’s inequality.

Therefore, d
dM Var½Ẑ� < 0 holds for all NT 2 N: w

The result in Theorem 4.5 states that M ¼ NT is optimal,
when NT is sufficiently large. Since M 	 NT , we know that

M 	 NT as M ! 1: Hence, Var½Ẑ� decreases to zero even-
tually as NT increases. It, however, is not mathematically

clear that Var½Ẑ� is decreasing over M for any fixed NT. We

prove that Var½Ẑ� is a decreasing function of M for any

fixed NT 2 N when f ðxÞ ¼ qðxÞ: We conjecture that Var½Ẑ�
also decreases for practically almost all NT 2 N even if

f ðxÞ 6¼ qðxÞ: This is because the derivative of Var½Ẑ� in (4.7)

is either positive or negative, implying that Var½Ẑ� is either
increasing or decreasing in M. If NT is sufficiently large
such that the numerator in (4.7) is negative, the derivative
becomes negative. Otherwise, suppose that the derivative is
positive. Then M¼ 1 becomes optimal, implying that we
only need to take one input sample X1 at the first-level
simulation and assign all simulation budget NT to X1, which
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seems unreasonable. Therefore, we believe the derivative is
negative and thus, M ¼ NT is optimal in most cases.

Theorem 4.5 can be interpreted as the optimality at the
full exploration. However, the resulting optimal Ni values
likely take real values. A problem, hence, arises when we
actually implement the simulation with M ¼ NT. To main-

tain the unbiasedness of Ẑ , each Xi for i 2 f1, :::,Mg should
have at least one instance of the second-level simulation
(Choe et al., 2015). In other words, we should have Ni � 1:
This implies that with M ¼ NT, we have to assign Ni ¼ 1
budget to each Xi in the second-level simulation. To illus-
trate, Figure 4.1 depicts the optimal allocation (see the red
circles) under M ¼ NT using the numerical example in
Section 5.1. In this specific example, jxij values around jxj ¼
2 are mostly sampled from q�ðxÞ in (4.3). On the other
hand, the optimal allocation Ni for each sampled xi assigns
more budgets to small jxij: This may look counter-intuitive,
but it is not. Large second-level budget allocation around
jxj ¼ 0 is due to small E½̂sðxiÞ�, increasing Ni in (4.4).
Furthermore, the budget allocation is jointly determined by
importance sampling density and the second-level allocation.
That is, as seen in Figure 4.1, importance sampling takes
more samples in regions having large E½̂sðxÞ� and Var½̂sðxÞ�
around jXj ¼ 2: Thus, the sum of Ni values in those regions
is larger than that in regions with few xi values (around
jXj ¼ 0). Here, the key point is that theoretically optimal Ni

values are different among sampled inputs under M ¼ NT.
However, the implementable version of the theoretically
optimal allocation assigns only one replication for each
input (i.e., Ni ¼ 1) (see the blue dots in Figure 4.1). Doing
so loses the optimality. The following section shows that
such rounding affects the optimality.

4.3. Comparison of different exploration-only strategies

The fact that the theoretical optimality is achieved at M ¼
NT leads us to additionally consider an alternative estimator,

denoted by Ẑ2, which is intentionally designed to explore
the input area without exploitation. Hence, before investigat-
ing how rounding of the real-valued optimal Ni values

affects the optimality in Ẑ , we investigate the exploration-

only estimator Ẑ2 (Choe et al., 2015):

Ẑ2 � 1
NT

XNT

i¼1

ŝðXiÞ f ðXiÞ
qðXiÞ : (4.8)

This estimator runs the simulator once at each sampled Xi,
that is, no replication at Xi. Thus, it does not exploit the sto-
chastic response surface, rather it permits exploration only.

One might think that the estimator Ẑ2 in (4.8) can be

regarded as a special case of the original estimator Ẑ when
M ¼ NT and Ni ¼ 1 for all i 2 f1, :::,NTg: It, however, is
not true because the optimal importance sampling density

for Ẑ and that for Ẑ2 are different. Let q�2ð�Þ denote the opti-

mal importance sampling density that minimizes Var½Ẑ2�:
Chen and Choe (2019) derived the optimal q�2ð�Þ as follows.
Theorem 4.6 (Chen and Choe, 2019). For the estimator Ẑ2

in (4.8), the optimal importance sampling density q�2ð�Þ that

minimizes Var½Ẑ2� is given by

q�2ðxÞ ¼
1
Cq�2

f ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ŝðxÞ2
� �q

, (4.9)

where Cq�2 is a normalizing constant. Let Ẑ
�
2 be Ẑ2 with the

optimal importance sampling density q�2ð�Þ. Then, Var½Ẑ
�
2� is

as follows:

Var Ẑ
�
2

h i
¼ 1

M
Ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ŝðXÞ2jX
� �q� �2

� Ef E ŝðXÞjX½ �½ �2
" #

:

We can easily notice the difference between q�ð�Þ in (4.3)
and q�2ð�Þ in (4.9). Therefore, the exploration-only estimator

Ẑ2 in (4.8) cannot be viewed as a special case of the original

estimator Ẑ when M ¼ NT. Moreover, we would like to

point out that, whereas Ẑ2 does not allow replication at each
sampled Xi, it naturally accounts for heterogeneous noise

over the input space. Considering that E ŝðxÞ2
� �

¼
Var ŝðxÞ½ � þ E ŝðxÞ½ �2, q�2ð�Þ samples more inputs in regions
with greater variance and expectation, striking a balance
between exploration and exploitation.

Noting that both the original estimator Ẑ with theoretic-
ally optimal input size M ¼ NT and the exploration-only

estimator Ẑ2 suggest the full exploration strategy, we com-
pare their variances. Furthermore, we also consider the
implementable version of the original optimal estimator by
setting Ni ¼ 1. Specifically, let us consider three different
cases as follows:

� Case 1 represents the theoretically optimal solution. It
uses the original estimator Ẑ with M ¼ NT and employs
the optimal importance sampling density q�ð�Þ in (4.3).
The optimal Ni values are obtained from (4.4). Let Ẑ

�
1

denote the resulting theoretically optimal estimator.
� Case 2 employs the optimal exploration-only estimator

Ẑ
�
2 with the optimal importance sampling density q�2ð�Þ:

� Case 3 uses Ẑ with q�ð�Þ when M ¼ NT. The difference
from Case 1 is to set Ni ¼ 1, because Ni � 1 for all

Figure 4.1. Example of Ni over Xi with NT ¼ M ¼ 1000:
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i 2 f1, . . . ,Mg is needed for actual implementation as
mentioned at the end of Section 4.2. Let Ẑ

�
3 denote the

implementable version of Ẑ
�
1:

Mathematically, we can write the estimators for three
cases as follows:

Ẑ
�
1 �

1
NT

XNT

i¼1

1
N�

i

XN�
i

j¼1

ŝjðXiÞ f ðXiÞ
q�ðXiÞ ,

Ẑ
�
2 �

1
NT

XNT

i¼1

ŝðXiÞ f ðXiÞ
q�2ðXiÞ , Ẑ

�
3 �

1
NT

XNT

i¼1

ŝðXiÞ f ðXiÞ
q�ðXiÞ ,

where Ẑ
�
j is the estimator of Case j for j 2 f1, 2, 3g and N�

i

in Ẑ
�
1 is the theoretically optimal budget allocation in (4.4)

for i 2 f1, :::,NTg: Note that Ẑ
�
1 is the same as Ẑ with M ¼

NT. We summarize the estimators in Table 4.1.
In Case 1, the resulting Ni values are likely real-valued

numbers, so we cannot conduct actual experiments. We can,
however, still obtain the theoretically optimal variance using

(4.6). Theorem 4.7 compares the variance of Ẑ
�
1, Ẑ

�
2, and Ẑ

�
3:

Theorem 4.7.

Var Ẑ
�
1

h i
	 Var Ẑ

�
2

h i
	 Var Ẑ

�
3

h i
:

Proof. The proof is available in the online supplement. w

Theorem 4.7 provides important implications. First, given

NT, the variance (Var½Ẑ�
3�) of Case 3, which is Case 1’s

implementable version, is larger than Case 1’s variance. The

gap between Var½Ẑ�
1� and Var½Ẑ�

3� comes from the rounding
error of Ni values to make them into integers and keep the
unbiasedness of the estimator. Second, the theoretically opti-

mal variance (Var½Ẑ�
1�) in Case 1 is smaller than the optimal

variance (Var½Ẑ�
2�) in Case 2. However, the variance

(Var½Ẑ�
3�) of Case 3 is larger than Case 2’s variance. In sum-

mary, although Case 1 with the original estimator Ẑ
�
1 theor-

etically provides better performance than the estimator Ẑ
�
2,

Case 1’s implementable version (Case 3) performs worse
than Case 2.

Note that all three cases take the exploration-only strat-
egy, and there is no exploitation. Theorem 4.7 indicates that

among the exploration-only options, Ẑ
�
2, which is intention-

ally designed to explore only, is better than the original esti-
mator that implements the exploration with rounding.

On the other hand, because we lose optimality due to

rounding when the original estimator Ẑ is used, the optimal
M that considers rounding could lie between one and NT. If

we can find such an optimal M, Ẑ could outperform Ẑ
�
2: In

our implementation in Section 5, we actually observe that Ẑ

with M < NT generates a smaller variance than Ẑ
�
2 in some

cases. However, the optimal M depends on the problem
structure, and finding optimal M, either analytically or
empirically, is not straightforward. In Section 5, we empiric-
ally study when the exploration-replication is better than the
exploration-only strategy.

Before moving to the numerical studies, it is worthwhile
to look into the effect of rounding to determine Ni. As M
gets closer to NT, we sample more inputs and thus, each
input gets less budgets, so the rounding error becomes
larger. To illustrate, Figure 4.2 depicts the optimal alloca-
tions of NT ¼ 1000 without integer constraints in red circles
and the rounded integer allocation in blue circles in the
one-dimensional example in Section 5.1. When M is 100,
the difference is insignificant. However, as M gets larger, the
difference becomes obvious. When M¼ 1000, the practical
allocation NT ¼ 1 is substantially different from the opti-
mal allocation.

Finally, as a remark, our importance sampling scheme is
different from an importance sampling procedure used in
Bayesian inference or Monte Carlo integration. We derive
the optimal importance sampling density qð�Þ that can min-
imize the estimation variance. The density qð�Þ with a sto-
chastic computer model is oftentimes complicated, so one
cannot directly draw samples from qð�Þ: Thus, we employ
the rejection sampling to get independent and identically
distributed samples in our implementation.

Table 4.1. Summary of different estimators.

Estimator Explanation

Ẑ original estimator with the input sample size M
Ẑ
�
1 Ẑ with q� and N�

i for i 2 f1, :::,NTg
Ẑ
�
2 Ẑ 2 with q�2

Ẑ
�
3 Ẑ with q� and Ni ¼ 1 for i 2 f1, :::,NTg

Figure 4.2. Ni over Xi with different M values, NT ¼ 1000.
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5. Numerical experiments

We conduct experiments with a one-dimensional numerical
example for estimating the tail probability PðY > lÞ in
Section 5.1. Section 5.2 estimates E½Y2� to confirm our find-
ings in general settings other than the tail probability. In
Section 5.3, a case study for a wind turbine simulator in
Choe et al. (2015) is presented in our analysis framework.
Based on these experiments, Section 5.4 discusses our find-
ings. We note that more numerical experiments—the tail
probability with three-dimensional inputs and the expected
shortfall E½YIfY>lg�—are available in the online supplement.

5.1. One-dimensional example for estimating PðY>lÞ
We first use the following example that estimates the
tail probability of a random variable, PðY > lÞ (Choe
et al., 2015):

X 
 Nð0, 1Þ, YjX ¼ x 
 N lðxÞ, r2ðxÞ
	 


, (5.1)

where lðxÞ and rðxÞ denote the true mean and standard
deviation of YjX ¼ x, respectively, given by

lðxÞ ¼ 0:95x2 1þ 0:5 cos ð10xÞ þ 0:5 cos ð20xÞð Þ,
rðxÞ ¼ 1þ 0:7jxj þ 0:4 cos ðxÞ þ 0:3 cos ð14xÞ: (5.2)

The total simulation budget NT is 1000. We con-
sider a ¼ PðY > lÞ ¼ 0:05:

Note that lðxÞ and rðxÞ are used to find E½̂sðxÞ� and
Var½̂sðxÞ� in the importance sampling densities. In practice,
when the second-level simulation uses a black box computer
model, lðxÞ and rðxÞ are unknown (and thus, E½̂sðxÞ� and
Var½̂sðxÞ� are unknown). This problem commonly arises in
the nested simulation literature. Thus, the analysis assumes
pre-experiments to build a (rough) surrogate model estimat-
ing the response surface from existing data or a small pilot
sample (Choe et al., 2015). To see the effect of an inaccurate
surrogate, we consider the following estimates of lðxÞ and
rðxÞ, which multiply cosine terms in (5.2) by a constant q,
as in Choe et al. (2015):

l̂ðxÞ ¼ 0:95x2 1þ 0:5q cos ð10xÞ þ 0:5q cos ð20xÞð Þ,
r̂ðxÞ ¼ 1þ 0:7jxj þ 0:4q cos ðxÞ þ 0:3q cos ð14xÞ: (5.3)

We will investigate how the performance of the estimators
changes when we vary q from one to zero. Please note that
using a single parameter q is just one way of controlling the
surrogate accuracy in this example.

First, we compare the variance of the three estimators,

Ẑ
�
1, Ẑ

�
2, and Ẑ

�
3, when the estimation of lðxÞ and rðxÞ is

exact (q ¼ 1:0) in Figure 5.1. Here, r½Ẑ�
1� is the theoretical

standard deviation, and r½Ẑ�
2� and r½Ẑ�

3� are the sample
standard deviations, each obtained from 1000 experiments.

The results agree with Theorem 4.7, i.e., Var½Ẑ�
1� ¼ r2½Ẑ�

1� 	
Var½Ẑ�

2� 	 Var½Ẑ�
3�: Moreover, the performance of Ẑ

�
2 is

comparable to the theoretically optimal estimator Ẑ
�
1; r½Ẑ

�
1�

is close to r½Ẑ�
2�: On the other hand, the difference between

r½Ẑ�
1� and r½Ẑ�

3� is not negligible, demonstrating that the

rounding could affect the optimality significantly when
M ¼ NT.

We further investigate how the performance of Ẑ changes

with different M. Figure 5.2 illustrates r½Ẑ� over M. The dot-

ted line denotes the theoretical standard deviation of Ẑ over
M. The solid line represents the sample standard deviation

of Ẑ with 1000 experiments for each M, where each real-val-
ued Ni is rounded to its nearest natural number. We also

include r½Ẑ�
1�, r½Ẑ

�
2�, and r½Ẑ�

3� in the right-most vertical
line at M¼ 1000; the diamond and star markers indicate the

theoretical and sample standard deviation r½Ẑ�
2�, respect-

ively. As Ẑ2 does not involve the rounding issue, the sample
standard deviation is very close to its corresponding theoret-

ical sample standard deviation, unlike Ẑ
�
1:

In Figure 5.2, we observe that theoretical standard devi-

ation of Ẑ decreases over M, as shown in Theorem 4.5. The
actual sample standard deviation decreases in the beginning,
but it starts to increase because the rounding error becomes
exacerbated as M gets close to NT, i.e., as we assign less

budget to each Xi. In the end, r½Ẑ�
3� is much larger than

Figure 5.1. Comparison of r½Ẑ �
1�,r½Ẑ

�
2� and r½Ẑ �

1� with q ¼ 1:0, a ¼ 0:05, and
NT ¼ 1000.

Figure 5.2. r½Ẑ � over M and r½Ẑ �
2� with q ¼ 1:0, a ¼ 0:05, and NT ¼ 1000.
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r½Ẑ�
1�: The detailed values of standard deviations are sum-

marized in Table 5.1.
One interesting aspect is that the decreasing rate of r½Ẑ�

over M is quite fast. This is because the derivative of Var½Ẑ� in
(4.7) decays at a rate of 1=M2, given NT. Similarly, r½Ẑ�

3� also
decreases fast when M is small. Considering that the theoretical
standard deviation decreases fast when the rounding error
increases along with M, we may consider choosing small M.
For example, from Figure 5.2 and Table 5.1, we get the small-

est sample standard deviation for Ẑ when M is around 50. We
observe similar patterns with different NT and a values. And,

r½Ẑ� with M¼ 50 is slightly smaller than r½Ẑ�
3�:

Then, can we conclude that exploration-exploitation with
a small sample size M is more beneficial than the explor-
ation-only strategy? Note that the optimal importance sam-
pling density functions, q�ð�Þ and q�2ð�Þ, for the original and
exploration-only estimators include the mean and variance
of ŝðxÞ, which we assume to know so far with q ¼ 1:0 in
(5.3), but they should be estimated in reality (Chen and
Choe, 2019). The estimation of the mean and variance of
ŝðxÞ definitely affects the quality of the importance sampling
density. We look into this issue in detail with different
q values.

Figure 5.3 shows r½Ẑ� over M and r½Ẑ�
2� with inexact esti-

mation of E½̂sðxÞ� and Var½̂sðxÞ� (q ¼ 0:5 and q ¼ 0:0). The
detailed values are also reported in Table 5.2. We notice
that unlike the previous result with q¼ 1, the best M value
becomes larger as the estimation becomes less accurate –
smaller q values. It is around 300 and 500 when q is 0.5,

whereas M¼ 600 to 700 yields small r½Ẑ� for q ¼ 0:0: Recall
that the optimal M was around 50 when q ¼ 1:0: When the
estimation is inaccurate, the importance sampler draws

inputs from the unimportant input area. With small M, Ẑ

unnecessarily exploits the response surface at unimportant
Xi values. Therefore, inaccurate estimation of E½̂sðxÞ� and
Var½̂sðxÞ� requires more exploration (large M) than exploit-
ation to reduce the variance, but doing so inevitably
increases the rounding error in Ẑ: Without the quantitative
measure for evaluating the estimation accuracy, it is not
straightforward to find the optimal M value in Ẑ:

Notably, we observe that r½Ẑ�
2� is robust to the estimation

quality. Let us compare r½Ẑ�
2� in the last column of Tables

5.1 and 5.2. With different values of q, we obtain similar

results in Ẑ
�
2: On the contrary, the performance of Ẑ and Ẑ

�
3

appears to be substantially affected by the estimation accur-

acy. Moreover, when q ¼ 0:5,r½Ẑ�
2� (0.0042) is close to the

smallest value (0.0041) of r½Ẑ�: Interestingly, when q ¼
0:0, r½Ẑ�

2� is smaller than r½Ẑ� for any M, demonstrating that

Ẑ
�
2 is more robust to the estimation accuracy.

In summary, the exploration-only estimator Ẑ
�
2 with the

importance sampling density q�2 attracts our attention. This
estimator is free from the rounding error, and thus, the
sample standard deviation nearly coincides with the theoret-
ical standard deviation. Its resulting standard deviation is
close to the optimal one in Ẑ that considers both explor-
ation and exploitation. Furthermore, Figure 5.3 and Table
5.2 show that it performs well, even when the estimation of
E½̂sðxÞ� and Var½̂sðxÞ� is inaccurate. We conduct additional
experiments with a wide range of parameters (a and NT)
and observe similar results.

5.2. Expectation of Z5Y2

Importance sampling can be more effective for problems
where important input regions are narrow. The expectation
involving tail regions, such as tail probability (the

Figure 5.3. r½Ẑ � over M and r½Ẑ �
2� with q 2 f0:0, 0:5g:

Table 5.1. r½Ẑ � over M and r½Ẑ �
2� with exact estimation of E½̂sðxÞ� and Var½̂sðxÞ� for NT ¼ 1000, q ¼ 1:0, and a ¼ 0:05.

r½Ẑ �
M 1 50 100 300 500 700 1000 r½Ẑ �

2�
Sample 0.0055 0.0035 0.0036 0.0038 0.0038 0.0041 0.0058 (r½Ẑ �

3�) 0.0038
Theoretical 0.0064 0.0036 0.0036 0.0036 0.0035 0.0035 0.0035 (r½Ẑ �

1�) 0.0039
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expectation of an indicator function) in the previous section
and the expected shortfall available in the online supple-
ment, are such examples for effectively applying the import-
ance sampling scheme. Theoretically, however, our approach
should work in general cases, for example, the expectation
of a polynomial function of a random variable. This section
conducts an experiment when the random variable Z is the
square of Y, i.e., Z ¼ Y2:

Figure 5.4 plots the standard deviation over M with the
same distributions of X and YjX ¼ x presented in Section
5.3. In this example, the effects of rounding errors are not
as obvious as in the previous examples. This is because the
importance sampling density covers the whole input region,
and thus, we may not take a full advantage of the import-
ance sampling principle. However, we still obtain consistent

results as in the previous examples. That is, the estimator Ẑ
�
2

performs excellently and its standard deviation is close to
the theoretically optimal standard deviation in both cases.
The results demonstrate the general applicability of
our approach.

5.3. Case study

We employ the NREL wind turbine simulator (Jonkman
and Buhl Jr., 2005; Jonkman, 2009). The NREL wind turbine
simulator generates various load responses as simulation
outputs. Among the load responses, we consider two load
types – edgewise and flapwise bending moments which rep-
resent parallel and perpendicular load responses to the blade
rotor plane, respectively (Byon et al., 2016; Ding, 2019).
These two bending moments are important load responses
in wind turbine reliability (Moriarty, 2008).

Specifically, the IEC design standard, IEC 61400-1
(International Electrotechnical Commission, 2005), specifies
several Design Load Cases (DLCs). Among them, estimating
the failure probability (or, probability of exceedance (POE))
with Y being the maximum load response during a specific
interval (e.g., 10minutes) is required in DLC 1.1. Following
the design standard, we consider a maximum response (flap-
wise and edgewise moments) during 10-minute turbine oper-
ation as the response variable, and 10-minute average wind

speed as the input variable. In this case study, we employ the
truncated Rayleigh distribution between 3 m/s and 25 m/s as
the wind speed density, as in Moriarty (2008).

In our analysis, l¼ 8600 kNm and 13,800 kNm are used
as resistance levels for edgewise and flapwise moments,
respectively. With these resistance levels, the estimated fail-
ure probability PðY > lÞ is around 0.05 in both load types.
To estimate PðY > lÞ, one can use the Crude Monte Carlo
(CMC) sampling that samples wind speed from its original
density function. However, to estimate the POE with high
accuracy, CMC requires large computational budgets. The
importance sampling scheme discussed in our study allows
us to improve the estimation accuracy with limited budgets
by reweighting the sampling efforts to observe exceedance
events more frequently.

To implement the importance sampling, E½̂sðxÞ� and
Var½̂sðxÞ� are approximated with the nonhomogeneous
Generalized Extreme Value (GEV) distribution where the
location and scale parameters are formulated as spline func-
tions of wind speeds (Lee et al., 2013; You et al., 2017). To
fit the GEV distribution, a pilot sample that consists of 600
observations of (X, Y) is used. The detailed simulation set-
ting can be found in Choe et al. (2015).

Table 5.3 summarizes the sample standard deviations
reported in Choe et al. (2015), obtained from 50 experiments
for each case. For the total simulation budget, NT ¼ 1000 and
2000 are, respectively, used for the edgewise and flapwise
bending moment in each experiment. The results include the
sample standard deviations of the original estimator Ẑ with
four different M=NT ratios (M=NT ¼10%, 30%, 50%, and

80%) and of the exploration-only estimator Ẑ
�
2: Among the

four different values, M=NT ¼ 10% generates the smallest
sample standard deviation for edgewise moments, whereas
30% appears to perform best for flapwise moments. As M
increases, the performance of Ẑ becomes deteriorated.

From these results, we can conclude that it is not
straightforward to determine the practically optimal M
before trying different M values. However, the exhaustive
search for M adds significant computational burden, which
contrasts with the fundamental goal of importance sampling
to expedite the simulation process. On the other hand, the

Figure 5.4. Z ¼ Y2 example.
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exploration-only estimator in the last column in Table 5.3
provides reasonably good results in both output types.

5.4. Observations and discussion

Recall that the two-level simulation with stochastic response
faces the trade-off in estimating a random quantity: whether
to explore more inputs or exploit the response surface at
sampled points in more detail through replication. Based on
the theoretical analysis in Section 4 and empirical studies in
this section, we summarize our observations as follows:

1. When E½̂sðxÞ� and Var½̂sðxÞ� are well-estimated, the ori-
ginal estimator Ẑ with relatively small M and the
exploration-only estimator Ẑ

�
2 provide comparably good

performance.
2. However, when the estimation of E½̂sðxÞ� and Var½̂sðxÞ�

is inaccurate, Ẑ
�
2 provides more robust and better

performance than Ẑ:

Recall that the goal of importance sampling is to focus
the efforts on narrow input regions that really matter. With
inaccurate estimates of E½̂sðxÞ� and Var½̂sðxÞ�, importance
sampling miss-guides sampling efforts to less important

regions. Even worse, the original estimator Ẑ replicates in
those regions. This is why the exploration-only estimator
performs better with an inaccurate surrogate.

In nested simulation, a surrogate model is typically
assumed to exist or it is constructed from a small-scale pilot
experiment. As such, surrogate models are likely inaccurate.
Although the sampling-based importance sampling approach
provides an unbiased estimator under certain conditions
even with an inaccurate surrogate, the surrogate’s quality
affects the estimation performance. In practice, it is not
straightforward to determine the surrogate’s accuracy. As

such, the exploration-only strategy with Ẑ
�
2, which provides

consistently reliable performance, appears to be an adequate
choice in most cases. This implication is also supported by
the fact that the theoretical optimality suggests M ¼ NT

when Ẑ is used as the estimator. We note that our analysis
has been conducted in a general setting without restrictive
assumptions, except the continuous sample space of the
input X, as explained in Section 4.2. Thus, we believe our
conclusion can be applied to a wide range of applications.

As a final remark, our advocacy for the exploration-only
estimator may sound contradictory to the recommendations
from the literature, but it is not. For example, in the study
by Binois et al. (2019), which aims to build a globally accur-
ate GP emulator, replication turns out to be a better choice,
when the variance of the response surface is high. Recall

that the optimal importance sampling density q�2ðxÞ in (4.9)
of the exploration-only estimator draws more inputs in
regions with greater variance and expectation. Therefore,
even without replication, it considers the second-level vari-
ance to balance the trade-off between exploration and
exploitation, which aligns with the result in Binois et al.
(2019). Furthermore, we would like to point out that the
fundamental idea of importance sampling is to focus on the
narrow important input region of X. Thus, the underlying
premise is that the first-level stochasticity is larger than the
second-level noise. Thus, exploration over the important
input region, characterized by the importance sampling
density, has merits.

6. Conclusion

This article studies a simulation budget allocation problem
under a two-level simulation framework when importance
sampling is employed at the first-level. Importance sampling
has been widely used in rare event analysis, such as reliabil-
ity problems and financial risk analysis. Most importance
sampling studies consider deterministic computer models
where the optimal allocation does not need replication and
thus, they aim to solely optimize the first-level simulation.
With the increased popularity of stochastic computer mod-
els, how to balance the trade-off of exploration vs. replica-
tion at both levels becomes an important problem. Although
importance sampling schemes for stochastic computer mod-
els have been studied in the literature (Choe et al., 2015), no
guidelines are provided to address such a trade-off. This
study provides theoretical justification and practical guide-
lines on how to allocate sampling budgets, gain insights on
the stochastic importance sampling schemes, and suggest an
effective sampling strategy. To the best of our knowledge,
this article is the first study to optimize the resource alloca-
tion at both levels in the importance sampling framework.

We plan to make several extensions for our future work.
First, we assume that the random input vector of the first-
level simulation has a continuous density function. The
nested simulation literature in financial engineering often
concerns discrete portfolios for the first-level simulation. We
will extend our analysis in the discrete setting at the first-
level simulation. Second, we observe that the estimation
accuracy of E½̂sðxÞ� and Var½̂sðxÞ� plays an important role in
the two-level simulation. In the future, we plan to employ
the adaptive surrogate modeling strategy (Binois et al., 2019)
to estimate them and incorporate it into the importance
sampling framework, so that the estimation accuracy and
computational efficiency can be further improved in prac-
tical implementation.

Table 5.2. r½Ẑ � over M and r½Ẑ �
2� with inexact estimation of E½̂sðxÞ� and

Var½̂sðxÞ� for NT ¼ 1000 and a ¼ 0:05.

r½Ẑ �
M 1 50 100 300 500 700 1000 (r½Ẑ �

3�) r½Ẑ �
2�

q ¼ 0:5 0.0225 0.0049 0.0044 0.0041 0.0041 0.0044 0.0070 0.0042
q ¼ 0:0 0.0552 0.0098 0.0070 0.0053 0.0083 0.0051 0.0122 0.0048

Table 5.3. r½Ẑ � over M and r½Ẑ �
2� for the wind turbine case study (Choe

et al., 2015).

r½Ẑ �
M=NT 10% 30% 50% 80% r½Ẑ �

2�
Edgewise 0.0016 0.0018 0.0022 0.0022 0.0020
Flapwise 0.0034 0.0028 0.0032 0.0033 0.0032
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Next, it is known that importance sampling is not effect-
ive for high-dimensional problems in general, due to several
challenges. The importance sampling density qð�Þ involves a
normalizing constant that requires integration over input
variables. When the input dimension is high, integration
over multiple variables causes a critical computational issue.
To avoid this issue, one can use a self-normalized estimator
that does not require a normalizing constant (Owen, 2013).
The self-normalized estimator, however, is biased with a
small-size sample while it is a consistent estimator.
Furthermore, we assume that the cost of sampling input var-
iables is negligible relative to that of a target variable. For
the high-dimensional problems where the cost of sampling
input variables is considerable, one can consider a Markov
chain Monte Carlo approach as an alternative to the rejec-
tion sampling, method; however, theoretical properties need
to be re-investigated, due to the dependency of sampled
points. On the other hand, we believe the importance sam-
pling scheme studied in this aritcle has the potential to han-
dle high-dimensional problems. Due to the parsimonious
principal in typical engineering systems, not all input varia-
bles are equally important. Instead, a small number of
selected input variables mainly affect the system response.
Therefore, we can regard those important variables as main
inputs and apply the importance sampling principal solely
to them, while treating others as stochastic noise. The exten-
sion of this work for high-dimensional problems remains a
subject for future study.

Lastly, for real-world applications, a guideline to select
the total budget NT would be beneficial and important for
practitioners. We plan to adaptively increase the sample size
until some criterion is satisfied. One such criterion could be
a Coefficient Of Variation (COV). For example, if COV is
smaller than a pre-specified threshold, we can sequentially
add more samples. We would like to mention that the
exploration-only estimator provides a better platform for
adaptively deciding NT. The original estimator allocates
budgets to all sampled inputs at once, and thus, it is less
appropriate in this sequential sampling. Although we can
add a batch of samples and allocate budgets in each batch
with the allocation rule in (4.4), rounding error would be
exacerbated when the batch size is small. The exploration-
only estimator does not face such issue, since it does not
permit replication. We hope to extend our framework for
further improving the budget determination and analyzing
theoretical and practical properties with adaptive sample
sizes in our future study.
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