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A B S T R A C T

This paper presents an integrative methodology for managing and stabilizing the output of a wind/solar farm
using storage devices in a cost effective and real-time manner. We consider the problem where a renewable
farm should decide the amount of energy charged into, or withdrawn from, the battery given the stochastic and
time-varying nature in the renewable energy power output. Our methodology features a seamless integration
of a non-myopic decision framework and a sequential non-parametric predictive model based on functional
principal component analysis. A key feature of our algorithm is that it quantifies costs over a rolling horizon
where both predictions and decisions are updated on the fly as new data is acquired. Our technology is tested
on the California ISO dataset. The case study provides a proof-of-concept that highlights both the benefits and
ease of implementation of our forward looking framework.
1. Introduction

Recently there has been considerable emphasis on replacing the
generation of electric energy from fuel-based conventional sources
with renewable sources like solar and wind [1]. The integration of
renewable energy into the grid system provides an environmentally
friendly solution to reduce carbon emission from conventional power
generation. Many states in the U.S. have set goals of achieving such
a switch, and these are being consistently updated. Texas recorded
26,045 MW of electric energy generated by renewal sources in 2017,
beating its goal for 2025 by 250% [2]. California has set the goal of
100% by 2045 up from 50% by 2030, Massachusetts has set 55% by
2050, New Jersey has set 50% by 2030, etc [2]. Renewable energy
will continue to play an important role in electricity production in the
future. Similar trends have been observed in other countries [3].

The most common sources of renewable energy are wind and solar.
Despite being attractive due to their low carbon footprint and relatively
low production costs, the power output from these systems is highly
volatile as it depends on the uncontrollable and time-varying weather
conditions. To cope with such volatility, grid operators often rely on
expensive ancillary services, negating some of the attractiveness of the
renewables [4,5].

In addition, the solar and wind power outputs have diurnal patterns.
For example, solar output is available only during the day time. Current
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statistics show that on a yearly basis, more than 30% of the electricity
load in California is met by wind and solar power, while during certain
days, the renewable energy can contribute to over 50% of the demand
during the day time, but less than 20% in the evening and night [6].
The diurnal pattern in California is called a ‘‘duck curve’’, where the
net load, i.e., the total electricity demand minus the solar plus wind
energy generation, is characterized by the duck shaped curve, as shown
in Fig. 1 [7]. To highlight the problem, at around 2 pm the solar plants
produce the large amount of energy for the day, so the net load is small.
However, the sun sets and the solar energy output quickly drops to zero
at around 6 pm in the evening. At the same time, consumers increase
the demand by turning on their lights and air conditioners and the total
load rises dramatically.

The steep ramp up in the ‘‘duck curve’’ is accommodated by con-
ventional power plants. Because conventional plants have a limited
ramping up rate, the California ISO operates them at low levels. During
noon, their low level production together with the renewable energy
exceeds the amount of total load. As a result, the California ISO often
curtails part of renewable energy generated and frequently observes
curtailment of 20 to 30 percent of the solar capacity [8]. The ex-
cess conventional plant operations and renewable energy curtailment
raise the cost of power grid operations, thus significantly decreasing
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Fig. 1. The ‘‘Duck Curve’’ from California ISO.
Source: Excerpted from [7].

its economic value [9]. To address these challenges, grid operators
increasingly rely on storage devices, including pumped hydro, battery,
and flywheels [10,11]. For example, battery technology is being used
to stabilize the output in micro grids and even nationwide grids [10].
Tesla’s 100 MW/129 MWh Powerpack project in South Australia was
also tested specifically for this purpose [11].

In this paper, we propose a look-ahead dynamic optimization model
to manage the variability and intermittency problems in renewable
sources through using battery devices. Our approach is data-driven and
exploits historical data to decide how much energy needs to be stored
to, or withdrawn from, energy storage devices, as well as the purchase
decisions from the electricity spot market.

Such short-term decisions are typically made at each hour (or at
a shorter duration, e.g., every 5 min), after the commitment levels
from renewables are decided on the day-ahead energy market. Al-
though our focus is to optimize short-term battery operations, we do
so via a look-ahead framework which utilizes future renewable energy
pattern predictions. This distinguishes this work from the myopic ap-
proach which optimizes a ‘‘snap-shot’’ operation of the system at each
decision point, without taking the future renewable generation into
consideration.

Specifically, optimal storage and energy purchase decisions are
formulated as a convex dynamic programming (DP) which minimizes
costs over future steps in reference to the expected total purchase and
salvage costs for the grid entities. Using historical data we then provide
a non-parametric forecasting model, based on functional principal com-
ponent analysis (FPCA), that predicts the future trajectory of renewable
supply whenever new data is obtained. A salient aspect of FPCA is
that, despite its non-parametricity, it features a linear decomposition
of the longitudinal signals which in turn facilitates efficient model
updating using an empirical Bayes procedure. Given the FPCA model, our
framework updates predictions of the future trajectory of renewable supply
whenever new data is obtained and iteratively solves a linear program for
determining the battery storage policy for each period.

The main contribution of the proposed look-ahead framework is
three-fold: (1) The proposed objective provides a real-time solution that
seamlessly integrates both a non-myopic decision framework and a se-
quential non-parametric predictive model; (2) The FPCA-based forecast
provides prediction that can capture both common daily patterns and
sudden changes during a day; (3) The predictions and decisions can be
updated integratively on the fly as new data is acquired. A case study
is conducted with data from California ISO and the results illustrate the
ease of implementation of our algorithm in practice and its capability
to stabilize the power output from a wind or solar farm.

The remaining paper is organized as follows. Section 2 reviews
relevant studies. Section 3 presents the stochastic control program for-
mulation. In Section 4, we develop the solution procedure. In Section 5
2

to Section 7, we conduct a case study using data from California ISO.
Section 8 concludes the paper.

2. Literature review

Recently, considerable attention has been paid to the application of
energy storage to grid system operations. In [12,13], an optimal control
model is proposed for storage management under the assumption that
the load (demand) and renewable energy are deterministic or per-
fectly known. In a dynamic and off-line setting, control strategies have
been proposed to mitigate the intermittent nature of renewable energy
sources [14,15]. In particular, real-time control and load prediction are
integrated to solve scheduling problems. In these works, load statistics
are assumed along with renewable energy arrivals. Obtaining real-time
strategies for unknown renewable energy dynamics is challenging. Con-
sidering the integration of batteries and renewable energy, Lyapunov
optimization techniques [16] have been employed to obtain a real-time
control [17,18]. A recent study [19] proposes a multi-scale scheduling
model to coordinate a combined system of thermal generator, hydro
pumped storage, battery, and intermittent renewable energy sources
such as wind power and photovoltaic. Based on multi-scale ahead
forecast data, the optimal power outputs are obtained by solving a
mixed-integer linear programming model. However, in these studies
the uncertain system dynamics are either assumed to be independent
and identically distributed or known beforehand, which is unrealistic
in practice.

To handle the time-varying stochastic nature of the production
/demand, a scenario-based approach is often employed in the lit-
erature. This approach generates multiple scenarios, each of which
represents the future trajectory of wind and solar power output. For
instance, in [20] battery technology is studied from the perspective
of the power system operator. The authors propose a two-step frame-
work to analyze the value of energy storage to manage renewable
resources in transmission systems. In the first stage, inspired by the
approach in [21], a stochastic unit commitment model is formulated
as a mixed integer linear program and solved using a predetermined
set of renewable energy scenarios. In the second stage, other scenarios
(out-of-sample) are generated to test the day-ahead solution obtained
from the first stage, while determining a flexible operational strategy
for batteries.

Similarly, in [22] and [23] optimization problems are formulated
for determining the amount of energy charged into, or discharged from,
the battery for each time interval. Their objective is to minimize the
expected cost including energy purchase and investment or set-up cost.
A three-stage stochastic unit commitment model is proposed in [24] to
manage power systems with renewable energy uncertainty and thermal
energy storage. The first stage utilizes forecasts to determine the day-
ahead operational decisions. Using multiple realizations, the second
stage optimizes the expected generation costs in real time and then
future operational decisions are considered in the last stage. The study
in [23] investigates the California ISO data and classifies the wind and
solar energy power output into 16 scenarios. In this scenario-based
approach, when scenarios are chosen for a day or time block, they are
typically kept fixed and cannot be changed during that time block. As
a result, the scenario-based models do not have the flexibility to reflect
the changes on the fly.

Another approach is to formulate the problem using stochastic
control and optimization models. For example, in [25], an approximate
DP algorithm is proposed to manage microgrids under uncertainties in
real-time. The model is trained in a dynamic fashion using multiple
scenarios, which are updated as new information arrives. An adaptive
robust model is proposed in [26] to schedule energy and reserves a
day-ahead, considering bulk storage devices and wind uncertainty. The
model is reformulated as a mixed-integer tri-level programming with
lower-level binary variables. The resulting formulation is then solved
via an exact nested column-and-constraint generation algorithm. In
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Fig. 2. Wind/solar farm’s problem considered in this study.

solving a wind energy commitment problem in the presence of storage,
Kim and Powell [27] derive an analytical solution for the optimal
policy under the assumption that wind follows a uniform distribution.
The studies in [28] and [29] propose an approximate DP algorithm to
manage a storage system integrated with a renewable energy source.
A similar study in [30] aims to smooth the wind or solar power
output curve via a stochastic control system. When a new wind or
solar power output is observed, the control system determines the
smoothed output sent to the electricity grid and the remaining excess
production or shortage is covered by the battery system. However,
the wind or solar farm does not provide the smoothed output before
the production is observed, and thus, does not provide a commitment
for the ISO/RTO where electricity generators are required to provide
commitments before actual production is observed.

In summary, existing studies provide dynamic decisions or controls,
assuming predictions are pre-determined a priori, follow a simple dis-
tribution or defined by a set of scenarios. Consequently, when actual
power outputs differ from the assumed values, resulting decisions can
significantly increase operational costs. On the contrary, we propose a
sequential scheme that provides and updates a predictive distribution
over all time points within a horizon and exploits these functional
predictions to provide forward looking decisions.

3. Problem formulation

In an electricity grid system that generates and delivers renewable
energy, we consider the supply side of the system, i.e. a wind/solar farm
which generates renewable energy and delivers a committed amount
to a distributor. The farm uses a battery to help manage the variable
renewable output of the wind/solar operator. The distributor then
gathers energy from generators and then sends them to the customers.
Here we present the problem with one renewable farm and one battery
system (Fig. 2). However, our approach is generic and can be readily
extended to multiple farms or battery systems.

We consider that the committed dispatch levels for the wind/solar
farm is determined in the day-ahead unit-commitment market. Let 𝐾(𝑡)
denote the promised amount at time 𝑡. For example, assume 𝑡 to be
in hours, in the day-ahead market the farm commits a certain amount
of energy each hour for the next day, such that 𝐾(0),… , 𝐾(23) are
determined a day ahead. In the actual operation, the generated energy
could be different than the committed amount due to the renewable
source stochasticity, therefore, the farm’s goal is to efficiently manage
operations, with the help of the battery, to deliver the promised amount
of energy to the distributor.

Fig. 2 shows the flow of energy in the wind/solar farm problem.
We assume a battery is connected to the farm, named Battery 1. The
amount of discharged energy of Battery 1 at time 𝑡 is denoted by 𝑥1(𝑡).
If 𝑥1(𝑡) is negative, the farm charges the battery with energy −𝑥1(𝑡). Let
𝑆(𝑡) denote the stochastic process representing the farm’s energy output
at time 𝑡. Then, the overall amount of energy which the farm can send
to the distributor is 𝑆(𝑡) + 𝑥1(𝑡). However, it may be higher or lower
than the committed amount 𝐾(𝑡). If 𝑆(𝑡) + 𝑥1(𝑡) < 𝐾(𝑡), i.e. the farm
cannot fulfill the promised amount, the farm must purchase the energy
difference from the electricity spot market at a unit price of 𝑐𝑠𝑝𝑜𝑡(𝑡) per
unit (this can also be viewed as a penalty that the farm is charged).
On the other hand, if 𝑆(𝑡) + 𝑥1(𝑡) > 𝐾(𝑡), i.e. the farm produces too
much energy, the farm has to salvage the excess energy at a unit price
of 𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) per unit.

We formulate the wind/solar farm operation problem as a forward
looking stochastic convex program (𝑆𝐶𝑃 ) that minimizes the overall
3

expected cost of the farm over a discretized rolling horizon from time
period (the current period) 0 to 𝑇 (the ending period). The objective is
given as follows:

𝑆𝐶𝑃 ∶ min
{𝒙𝟏(𝒕)∶𝑡=0,…,𝑇−1}

𝑇−1
∑

𝑡=0
𝜌𝑡 ⋅ [𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) ⋅ 𝐸

(

max{0, 𝑆1(𝑡) −𝐾(𝑡)}
)

+ 𝑐𝑠𝑝𝑜𝑡(𝑡) ⋅ 𝐸
(

max{0, 𝐾(𝑡) − 𝑆1(𝑡)}
)

] + 𝜌𝑇𝛷(𝐵(𝑇 )), (1)

𝑠.𝑡. 𝐵(𝑡 + 1) = 𝐵(𝑡) − 𝑥1(𝑡), (2)

𝐵𝑚𝑖𝑛 ≤ 𝐵(𝑡 + 1) ≤ 𝐵𝑚𝑎𝑥, (3)

− 𝐿 ≤ 𝑥1(𝑡) ≤ 𝐿, (4)

for all 𝑡 = 0,… , 𝑇 − 1 with

𝑆1(𝑡) = 𝑆(𝑡) + 𝑥1(𝑡), (5)

where 𝑆1(𝑡) and 𝐾(𝑡), respectively, represent the overall supply and
demand of the farm, and 𝜌 is the discount factor over time. Also,
𝛷(𝐵(𝑇 )) is the terminal cost that depends on the final battery charge.
For the terminal cost, one can simply assume it is zero for all states.
Another alternative is to use 𝛷(𝐵(𝑇 )) = 𝑐 ⋅max{0, 𝑏−𝐵(𝑇 )}, when there
is a charge 𝑐 for each unit of energy below the level 𝑏.

In the SCP above, the decision variables are {𝑥1(𝑡) ∶ 𝑡 = 0, 1,… , 𝑇 −
1}; the charged/discharged amount of energy of Battery 1. The initial
energy level 𝐵(0) is known and 𝐵(𝑡) ∈ [𝐵𝑚𝑖𝑛, 𝐵𝑚𝑎𝑥] where 𝐵𝑚𝑖𝑛 and 𝐵𝑚𝑎𝑥
denote the capacity limits of Battery 1. Finally, the constraint in (4)
limits the maximal charging/discharging rate during a time interval.

The formulation in 𝑆𝐶𝑃 aims to optimize battery operations
through quantifying and minimizing costs over a long-term rolling
horizon. By solving this program, the farm owner can obtain the Battery
charge/discharge decisions for each time period so that the overall
expected purchase and salvage cost of the farm can be minimized.

In practice, solving (1) is extremely challenging as 𝑆(𝑡) is unknown
over the future horizon. This renders the problem extremely challeng-
ing and impractical in real-time, while in reality 𝑥1(𝑡) needs to be
decided in an online fashion. Suppose that the current time is 𝑡0 and we
need to decide Battery 1’s charge/discharge amount 𝑥1(𝑡0). Now define
𝑆(𝑡) ∈ [0, 𝑆𝑚𝑎𝑥] and 𝐵(𝑡) ∈ [𝐵𝑚𝑖𝑛, 𝐵𝑚𝑎𝑥] as the state space, where 𝑆𝑚𝑎𝑥 is
the maximal power capacity of the wind/solar farm. Also let the current
renewable energy output 𝑆(𝑡0) = 𝑠 and battery level 𝐵(𝑡0) = 𝑏. Using a
DP approach, the value function 𝑉𝑡0+1(𝑠, 𝑏) under an optimal policy at
time point 𝑡0 + 1 is given as

𝑉𝑡0+1(𝑠, 𝑏) =
𝑇−1
∑

𝑡=𝑡0+1
𝜌𝑡−𝑡0−1 ⋅ [𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) ⋅ 𝐸

(

max{0, 𝑆1(𝑡) −𝐾(𝑡)}
)

+ 𝑐𝑠𝑝𝑜𝑡(𝑡) ⋅ 𝐸
(

max{0, 𝐾(𝑡) − 𝑆1(𝑡)}
)

] + 𝜌𝑇−𝑡0−1𝛷(𝐵(𝑇 )). (6)

With the optimal value function 𝑉 ∗
𝑡0+1

(𝑠, 𝑏), the SCP at time 𝑡0 is
solved as a stochastic dynamic model, 𝑆𝐷𝑃 (𝑡0):

𝑆𝐷𝑃 (𝑡0) ∶𝑉𝑡0 (𝑠, 𝑏) =

min
𝑥1(𝑡0)

𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡0) ⋅max{0, 𝑠 + 𝑥1(𝑡0) −𝐾(𝑡0)}

+ 𝑐𝑠𝑝𝑜𝑡(𝑡0) ⋅max{0, 𝐾(𝑡0) − 𝑠 − 𝑥1(𝑡0)}

+ 𝜌∫

𝑆𝑚𝑎𝑥

𝑠∗=0
𝑉 ∗
𝑡0+1

(𝑠∗, 𝑏 − 𝑥1(𝑡0))𝑝
(𝑡0)
𝑠𝑠∗ 𝑑𝑠

∗ (7)

𝑠.𝑡. 𝐵𝑚𝑖𝑛 ≤ 𝑏 − 𝑥1(𝑡0) ≤ 𝐵𝑚𝑎𝑥, (8)

− 𝐿 ≤ 𝑥1(𝑡0) ≤ 𝐿. (9)

where 𝑝(𝑡0)𝑠𝑠∗ ∶= 𝑃 (𝑆(𝑡0 + 1) = 𝑠∗ ∣ 𝑆(𝑡0) = 𝑠) is the transition probability
at time 𝑡0 from wind/solar power output 𝑠 to 𝑠∗. In practice these
probabilities are unknown and need to be estimated for each state 𝑠 at
every time 𝑡. One possible approach to obtain each 𝑝(𝑡) , 𝑡 = 1, 2,… , 𝑇−1
𝑠𝑠∗
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is to assume 𝑆(𝑡) follows a stochastic differential equation governed by
a Brownian motion, and then solve a set partial differential equation
(using the Kolmogorov forward equation [31]). Besides the indepen-
dent increment assumption inherited from the Brownian motion, this
approach is not suitable for an online application.

Furthermore, solving 𝑆𝐷𝑃 (𝑡0) requires a computationally expensive
and time consuming backward dynamic procedure which computes the
optimal immediate policy 𝑥1(𝑡), as a function of the state variables 𝑆(𝑡)
and 𝐵(𝑡) at each epoch 𝑡 = 𝑇 , 𝑇 − 1,… , 𝑡0. Moreover, during the imple-

entation, as is usual in stochastic DP, at each epoch 𝑡 = 𝑡0, 1,… , 𝑇 −1,
the optimal action as a function of the states, is selected from a look-
up table and implemented. This procedure is thus not adapted to the
changing circumstances encountered during the implementation and is
only valid in case the dynamic process is stationary and homogeneous.

4. The deterministic solution and stochastic alternatives

We first present the linear programming formulation in Section 4.1
where we relax the problem using the Jensen’s inequality and de-
cide the battery charging/discharging operations given the future 𝑆(𝑡).
Because the future 𝑆(𝑡) is unknown, in Section 4.2 we provide a
prediction method based on FPCA and highlight its advantages over
other predictive techniques. Once the prediction is made, we solve the
linear problem in Section 4.1 with the predicted 𝑆(𝑡). In doing so, to
minimize the influence of the prediction uncertainty, we only execute
the decision for time 𝑡 and proceed to the next epoch and update the
prediction with the most recent data. This process is repeated until
we reach the last epoch. In Section 4.3 we summarize the overall
framework.

4.1. Linear programming

In this section we present a solution procedure for approximately
solving the 𝑆𝐶𝑃 . Note that max{0, 𝑆1(𝑡)−𝐾(𝑡)} and max{0, 𝐾(𝑡)−𝑆1(𝑡)}
in the 𝑆𝐶𝑃 objective function are convex. Therefore, we can employ
the Jenson’s inequality to obtain the lower bound of the objective
function. Specifically, we obtain

𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) ⋅ 𝐸
(

max{0, 𝑆1(𝑡) −𝐾(𝑡)}
)

+ 𝑐𝑠𝑝𝑜𝑡(𝑡) ⋅ 𝐸
(

max{0, 𝐾(𝑡) − 𝑆1(𝑡)}
)

≥ 𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) max{0, 𝐸(𝑆1(𝑡)) −𝐾(𝑡)}

+ 𝑐𝑠𝑝𝑜𝑡(𝑡) ⋅max{0, 𝐾(𝑡) − 𝐸(𝑆1(𝑡))}. (10)

This inequality implies that we can relax the problem by replacing
the original objective function in (1) with its lower bound and solve
the problem that can minimize the bound. Such relaxation provides us
a new objective function as
𝑇−1
∑

𝑡=0
𝜌𝑡 ⋅ [𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) max{0, 𝐸(𝑆1(𝑡)) −𝐾(𝑡)}

+ 𝑐𝑠𝑝𝑜𝑡(𝑡) ⋅max{0, 𝐾(𝑡) − 𝐸(𝑆1(𝑡))}] + 𝜌𝑇𝛷(𝐵(𝑇 )), (11)

This reformulation renders the optimization problem as a deter-
ministic piecewise-linear optimization, given the ‘max’ operators. Let
us further define the auxiliary variables 𝑂𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) and 𝑂𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) that
represent the energy excess and shortage, respectively, at the decision
epoch 𝑡. Then we can reformulate the problem as the equivalent linear
formulation (LP) with linear inequality constraints of the piecewise
objective. This results in the linear minimization program over the
auxiliary variables and the decision variables. Suppose that the current
time is 𝑡0. Then the LP formulation is given as follows.

𝐿𝑃 (𝑡0) ∶ min
𝑇−1
∑

𝑡=𝑡0

𝜌𝑡−𝑡0 ⋅ [𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) ⋅ 𝑂𝑒𝑥𝑐𝑒𝑠𝑠(𝑡)

+ 𝑐𝑠𝑝𝑜𝑡(𝑡) ⋅ 𝑂𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡)] + 𝜌𝑇−𝑡0𝛷(𝐵(𝑇 )) (12)
4

𝑠.𝑡. 𝑂𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) ≥ 𝐸(𝑆(𝑡)) + 𝑥1(𝑡) −𝐾(𝑡), (13)

𝑂𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) ≥ 𝐾(𝑡) − 𝐸(𝑆(𝑡)) − 𝑥1(𝑡), (14)

𝑂𝑒𝑥𝑐𝑒𝑠𝑠(𝑡), 𝑂𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) ≥ 0, (15)

𝐵(𝑡 + 1) = 𝐵(𝑡) − 𝑥1(𝑡), (16)

𝐵𝑚𝑖𝑛 ≤ 𝐵(𝑡 + 1) ≤ 𝐵𝑚𝑎𝑥, (17)

− 𝐿 ≤ 𝑥1(𝑡) ≤ 𝐿. (18)

for all 𝑡 = 𝑡0, 𝑡0 + 1,… , 𝑇 − 1. Here, note that the shortage and excess
functions in the objective function in (6), which are piecewise linear
and convex, have been linearized in this formulation.

From 𝐿𝑃 (𝑡0), we observe that we only need to estimate {𝐸(𝑆(𝑡)) ∶
𝑡 = 𝑡0 + 1,… , 𝑇 − 1} to calculate the decision variables at each
epoch. This greatly simplifies the estimation procedure, compared
to the original formulation 𝑆𝐶𝑃 where 𝐸

(

max{0, 𝑆1(𝑡) −𝐾(𝑡)}
)

and
𝐸
(

max{0, 𝐾(𝑡) − 𝑆1(𝑡)}
)

need to be estimated. In the following section
we present a non-parametric Bayesian approach, based on FPCA, that
can estimate (and update) 𝐸(𝑆(𝑡)) and seamlessly integrate the FPCA
forecasts with (12). The key advantage of the FPCA is that 𝐸(𝑆(𝑡))
over the future horizon can be updated on the spot as more data is
observed. Thus, at each time epoch, predictions are updated and hence
the decisions. This allows us to refine decisions over time as more
data is gathered and account for non-stationary behavior with sudden
changes in the renewable supply.

Finally we note that in (12), the 𝐿𝑃 is written as 𝐿𝑃 (𝑡0). The
reason is that, despite the fact that solving 𝐿𝑃 (𝑡0) results in the optimal
𝒙∗(𝑡) = {𝑥∗1(𝑡0),… , 𝑥∗1(𝑇 − 1)}, these decisions are updated at the next
epoch as new data is observed. Thus at decision epoch 𝑡 only 𝑥∗1(𝑡) is
implemented. More detailed discussion will be provided in Section 4.3.

4.2. Real-time functional principal component analysis

Because the future movements of 𝑆(𝑡) are unknown to the farm and
we make no assumption on the nature of their stochastic dynamics,
we propose to predict the future values of 𝑆(𝑡) with FPCA and use the
predicted values in 𝐿𝑃 (𝑡0). We note that any predictive approach can
be plugged (ex: Neural networks, Arima, etc.) into our method. The
main advantages of our FPCA approach are:

• Non-Parametricity: The intermittency and high volatility of re-
newable energy makes predictions highly vulnerable to model
mis-specifications. Further, no physical equations are currently
available that provide an accurate prediction for renewable en-
ergy. Hence, we believe a non-parametric approach is suitable for
such applications.

• Model Updating: A salient aspect of FPCA is that, despite non-
parametricity, it features a linear and orthogonal decomposition
of longitudinal signals which in turn facilitates efficient model
updating using an empirical Bayes procedure. Indeed, this decom-
position makes it viable in situations that require fast decisions
(such as the operational decision-making per every 5 min in our
case study).

• Heterogeneity: FPCA has proven itself to be specifically compet-
itive when functions pose some heterogeneity. The volatility of
renewable energy requires this capability.

• Functional inference: FPCA is an operator on the functional space.
It borrows the strength across a set of functions to improve
prediction performance for the function at hand. As a result, it
can provide competitive predictive capabilities for both short and
long term predictions within its predefined domain.

To achieve real-time predictions, the energy supply data is divided
by day to form a longitudinal dataset. Then the supply for the period
running from current time to the end of current day is predicted. And,

as more supply data is collected, the prediction for the day is then
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𝑠

updated using an empirical Bayesian approach. Specifically, without
loss of generality, consider 𝑡 ∈ [0, 228) when prediction and decision are
updated every five minutes, i.e. horizon spans a day which is the case in
the day-ahead unit-commitment market. Suppose that the current time
is 𝑡0 where the value of 𝑆(𝑡), 𝑡 ≤ 𝑡0 for some 𝑡0 ≥ 0 is observed. Further,
suppose we start with the first prediction cycle as day 0. Let us define
𝑆(−𝑗)(𝑡) as the farm output at time 𝑡, 𝑗 days before day 0. Therefore,
{𝑆(−𝑗)(𝑡) ∣ 𝑗 = 1,… , 𝐽 , 𝑡 = 1⋯ , 𝑇 } forms the training data with data
collected during the past 𝐽 days. Now in day 0, given the observation
𝑆(1),… , 𝑆(𝑡0), our goal is to estimate the future values of 𝐸(𝑆(𝑡)) over
the rolling horizon, i.e., 𝐸(𝑆(𝑡0 + 1)),… , 𝐸(𝑆(𝑇 − 1)). Here note that
𝑆(𝑡) ≜ 𝑆(0)(𝑡) denotes the supply output in the current day.

Now assume that {𝑆(−𝑗)(𝑡)}𝐽𝑗=1 for 𝑡 ∈  are generated from a square-
integrable stochastic process 𝑆̄(𝑡) such that  stands for a time domain.
FPCA decomposes 𝑆̄(𝑡) as

𝑆̄(𝑡) = 𝜇(𝑡) +
∞
∑

𝑘=1
𝜉𝑘𝜙𝑘(𝑡) + 𝜖(𝑡), (19)

where 𝜇(𝑡) = 𝐸(𝑆̄(𝑡)), 𝜖(𝑡) ∼  (0, 𝜎2) and 𝜉𝑘 = ∫ (𝑆̄(𝑡) − 𝜇(𝑡))𝜙𝑘(𝑡)𝑑𝑡
is the functional principal component (FPC) score associated with
eigen function 𝜙𝑘(𝑡). The FPCA scores are pairwise-independent random
variables with zero mean and variance 𝜆𝑘 (i.e. 𝐸(𝜉2𝑘) = 𝜆𝑘). Here 𝜆𝑘
denotes the Eigen values associated with the Eigen functions and are
ordered by 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 0. As is shown in (19), heterogeneity across
the population is encoded via the different eigenfunctions and their
corresponding coefficients, i.e., the eigen scores 𝜉𝑘. To achieve a finite
representation, only the largest 𝐾 eigen values are considered such that
𝑆(−𝑗)(𝑡) ≈ 𝜇(𝑡)+

∑𝐾
𝑘=1 𝜉𝑗𝑘𝜙𝑘(𝑡)+𝜖(𝑡) for 𝑗 ∈ {1,… , 𝐽}. We follow standard

procedures in [32] to estimate model parameters; the mean function
𝜇(𝑡), eigen functions 𝜙𝑘(𝑡), and variances 𝜆𝑘.

Given the model above, our goal is to predict 𝑆(𝑡) given new
observations {𝑆(1),… , 𝑆(𝑡0)}. In particular, we aim to reflect the gen-
eral trend from previous days, but at the same time, individualize
the predictions to data from the specific day under consideration.
Specifically, the curve for the estimated output for the current day
(day 0) is represented as 𝑆(𝑡) = 𝜇(𝑡) +

∑𝐾
𝑘=1 𝜉0𝑘𝜙𝑘(𝑡) + 𝜖(𝑡), where

𝜉0𝑘 are the FPC scores of 𝑆(𝑡). Now the prediction of 𝑆(𝑡) can be
achieved by estimating 𝜉0𝑘. To this end, we exploit empirical Bayesian
updating scheme. Specifically, we utilize the trained 𝜆𝑘 as prior on
𝜉0𝑘 ∼  (𝜉0𝑘; 0, 𝜆𝑘) for 𝑘 = 1,… , 𝐾. This prior reflects the general trend
we infer from previous days. We then derive the posterior:

𝑃 (𝜉01,… , 𝜉0𝐾 |𝑆(1),… , 𝑆(𝑡0)) =  (𝜉01,… , 𝜉0𝐾 ; 𝝃∗,Σ∗), (20)

where

Σ∗ =
(

1
𝜎2

𝛷(𝒕)′𝛷(𝒕) +Λ−1
)′

,

𝝃∗ = 1
𝜎2

Σ∗𝛷(𝒕)′
(

𝐒(𝒕) − 𝝁(𝒕)
)

with

𝐒(𝒕) = (𝑆(1),… , 𝑆(𝑡0))′, 𝝁(𝒕) = (𝜇(1),… , 𝜇(𝑡0))′,

= diag(𝜆1,… 𝜆𝐾 ), 𝛷(𝒕) =
⎡

⎢

⎢

⎣

𝜙1(1) … 𝜙𝐾 (1)
⋮ ⋱ ⋮

𝜙1(𝑡0) … 𝜙𝐾 (𝑡0)

⎤

⎥

⎥

⎦

.

Given the posterior distribution in (20), the predictive mean 𝐸𝑡0
(𝑆(𝑡)|𝑆(1),… , 𝑆(𝑡0)) ≜ 𝑆∗

𝑡0
(𝑡) and variance 𝑣𝑎𝑟𝑡0 (𝑆(𝑡)|𝑆(1),… , 𝑆(𝑡0)) ≜

𝜎2∗𝑡0 (𝑡) for time 𝑡 = 𝑡0 + 1,… , 𝑇 − 1 ∈  are given as:

𝑆∗
𝑡0
(𝑡) = 𝜇(𝑡) +

𝐾
∑

𝑘=1
[𝝃∗]𝑘𝜙𝑘(𝑡),

(𝜎∗𝑡0 (𝑡))
2 = 𝜎̂2𝜇(𝑡) +

𝐾
∑

𝑘1

𝐾
∑

𝑘2

[Σ∗]𝑘1 ,𝑘2𝜙𝑘1 (𝑡)𝜙𝑘2 (𝑡) + 𝜎̂2(𝑡),

(21)

where 𝜎̂2𝜇(𝑡) is estimated variance of 𝜇(𝑡). The result above is key to
our model as it implies that updating predictions can be efficiently
5

done in closed form, following the linearity (in reference to coefficients)
of the FPCA decomposition. Real-time updating in turn allows us to
refine our decisions, also in real-time, due to the efficiency of the 𝐿𝑃
construction. This fact and the overall algorithm steps are highlighted
in the following subsection. Here we note that in the Appendix A we
add some practical considerations for fitting FPCA.

4.3. Overall decision framework

As shown in Algorithm 1, at each time epoch the farm can solve
the linear program 𝐿𝑃 (𝑡0) to decide the amount of energy that should
be charged into (or withdrawn from) the battery set, 𝑥∗1(𝑡). Note that
solving 𝐿𝑃 (𝑡0) results in optimal decisions over the entire horizon
𝒙∗(𝑡) = {𝑥∗1(𝑡0),… , 𝑥∗1(𝑇 − 1)}. If we exactly knew the future 𝑆(𝑡)
over the future horizon then 𝒙∗(𝑡) would be optimal. However 𝑆(𝑡) is
predicted and at the next epoch the predictions are updated and hence
the decisions. As such, at time 𝑡 only the first optimal solution 𝑥∗1(𝑡) is
implemented. The dynamic approximation algorithm for solving 𝐿𝑃 (𝑡0)
is given in Algorithm 1.

Algorithm 1 The Dynamic Approximation Algorithm For The
Wind/Solar Farm Problem
1: FPCA Training Steps:
2: Train the FPCA in (19) using previous 𝐽 days’ data {𝑆(−𝑗)(𝑡) ∣ 𝑗 =

1,⋯ , 𝐽 , 𝑡 = 1⋯ , 𝑇 − 1}.
3: Decision Making Steps:
4: for 𝑡 = 1 to 𝑇 − 1 do
5: Observe the renewable power output at current time 𝑡: 𝑆(𝑡).
6: Update the FPCA model using the observed data 𝑆(1),⋯ , 𝑆(𝑡) and

(20).
7: Predict 𝑆∗

𝑡 (𝑡 + 1),⋯ , 𝑆∗
𝑡 (𝑇 − 1) using (21).

8: Solve the linear program 𝐿𝑃 (𝑡) in (12) with the predicted power
output.

9: Use the first optimal solution 𝑥∗1(𝑡) as the battery
charge/discharge decision at time 𝑡.

0: end for

4.4. Stochastic alternatives

One key advantage of FPCA is that it provides a full predictive dis-
tribution. This implies that stochasticity in 𝑆(𝑡) over the entire horizon
can be accommodated for in our model. Here we propose two alterna-
tive solutions (i) a scenario based approach (ii) a robust optimization
approach. We will defer the robust approach to the Appendix A and
focus on the scenario based approach.

Recall, that our Empirical Bayes approach yields a posterior 𝑃 (𝜉01,
… , 𝜉0𝐾 |𝑆(1),… , 𝑆(𝑡0)) =  (𝜉01,… , 𝜉0𝐾 ; 𝝃∗,Σ∗) after each data point is
collected. Hence at any time point, a possible scenario for the evolution
of 𝑆(𝑡) over the future horizon can be generated through sampling from
 (𝜉01,… , 𝜉0𝐾 ; 𝝃∗,Σ∗) and finding the predictive mean in (21) over the
future horizon; 𝑡 ∈ {𝑡0+1,… , 𝑇 −1}. Therefore, a stochastic alternative
of our expectation approach in (12) is shown in (22).

min 1
𝑁

𝑁
∑

𝑖=1

{

𝑇−1
∑

𝑡=𝑡0

𝜌𝑡 ⋅ [𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) ⋅ (𝑂(𝑖)
𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) + 𝑂(𝑖)

𝐵 (𝑡))

+𝑐𝑠𝑝𝑜𝑡(𝑡) ⋅ (𝑂
(𝑖)
𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) + 𝑈 (𝑖)

𝐵 (𝑡))] + 𝜌𝑇𝛷(𝐵𝑖(𝑇 ))
}

, (22)

.𝑡. 𝑥̂𝑖(𝑡) = 𝑥(𝑡) + 𝑂(𝑖)
𝐵 (𝑡) − 𝑈 (𝑖)

𝐵 (𝑡),

𝐵𝑖(𝑡 + 1) = 𝐵𝑖(𝑡) − 𝑥̂𝑖(𝑡),

− 𝐿 ≤ 𝑥̂𝑖(𝑡) ≤ 𝐿,

𝑂(𝑖)
𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) ≥ 𝑆𝑖(𝑡) + 𝑥̂𝑖(𝑡) −𝐾(𝑡),

𝑂(𝑖)
𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) ≥ −𝑆𝑖(𝑡) − 𝑥̂𝑖(𝑡) +𝐾(𝑡),
(𝑖) (𝑖)
𝑂𝑒𝑥𝑐𝑒𝑠𝑠(𝑡), 𝑂𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) ≥ 0,



Applied Energy 296 (2021) 117068J. Wang et al.

a

w
f

5

i
f
h
c
d

s
s
T
T
v
o

5

n
p
d
p
T
c
m
p
a
w
d

p
r

Table 1
California ISO dataset (in Megawatts).

Date Hour Interval Load Solar Wind Net load ⋯

1/1/2019 0:00 1 1 22,320 0 2,862 19,458 ⋯
1/1/2019 0:05 1 2 22,295 0 2,915 19,380 ⋯
1/1/2019 0:10 1 3 22,204 0 2,919 19,285 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1/1/2019 6:50 7 11 21,644 3 2,034 19,607 ⋯
1/1/2019 6:55 7 12 21,613 52 2,026 19,535 ⋯
1/1/2019 7:00 8 1 21,655 121 2,020 19,514 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑂(𝑖)
𝐵 (𝑡) ≥ 𝐵𝑖(𝑡) − 𝑥(𝑡) − 𝐵𝑚𝑎𝑥,

𝑈 (𝑖)
𝐵 (𝑡) ≥ 𝐵𝑚𝑖𝑛 − (𝐵𝑖(𝑡) − 𝑥(𝑡)),

𝑂(𝑖)
𝐵 (𝑡), 𝑈 (𝑖)

𝐵 (𝑡) ≥ 0,

𝐵𝑚𝑖𝑛 ≤ 𝐵𝑖(𝑡 + 1) ≤ 𝐵𝑚𝑎𝑥,

for all 𝑡 = 𝑡0,… , 𝑇 − 1
A key feature of this approach is the automatic selection of relevant

scenarios. By automatic, we imply that FPCA can inherently update the
posterior as new data comes in and hence the posterior will reflect possible
scenarios relevant to data collected at the specific time of interest. We note
that in (22), there is a general battery charging/discharging decision
variables 𝑥(𝑡) and the scenario-based ones 𝑥̂𝑖(𝑡). 𝑥(𝑡) is the guiding
decision for all scenarios, but it may not be feasible for a specific
scenario because of the stochasticity of the energy output. Therefore,
we construct the scenario-based decision 𝑥̂𝑖(𝑡) using decisions 𝑥(𝑡) that
re feasible for each scenario.

Similarly, we can also build a robust optimization approaches,
hose objective function is the largest cost among all 𝑁 scenarios. The

ormulation is presented in Appendix A.

. Case study preliminaries

In this section, we apply the proposed method on data from the Cal-
fornia ISO [33]. The dataset includes the amount of energy generated
rom several types of sources (i.e., wind, solar, thermal, nuclear, and
ydro) and the load. It covers a span of several years (2014–2019),
ollected daily at 5-minute intervals. Table 1 shows a sample of the
ataset available in [33].

In Table 1, the ‘‘Load’’ column represents the actual electricity con-
umption during a 5-minute interval. The ‘‘Solar’’ and ‘‘Wind’’ columns
how the energy production from solar and wind farms, respectively.
he ‘‘Net Load’’ is the actual load minus solar and wind production.
he net load is met by other energy sources, typically expensive con-
entional power plants. Other columns include energy production from
ther sources, for example, thermal, hydro, nuclear, imports, etc.

.1. Data exploration

We first provide illustrative examples that highlight some compo-
ents of the California ISO data. Fig. 3 presents the solar plus wind
ower production data for each day of a month, each represented by a
ifferent colored curve. We observe that the daily solar and wind power
roduction have strong commonalities and follow a similar pattern.
his observation suggests that a prediction model that captures the
ommon diurnal pattern could be beneficial for non-myopic decision
aking. On the other hand, the pattern varies day-by-day, so the
rediction model should take into consideration such variations for
ccurate short-term predictions. This can be achieved via our FPCA model
hich starts off by a population estimate in (19) and then individualizes the
aily predictions in real-time in (20).

Fig. 4 presents the wind (in red lines) and solar (in blue lines)
ower production during a specific day on April 2018. The green area
epresents the amount of energy curtailed by the ISO. The solar plants
6

Fig. 3. Monthly solar + wind production data.

Fig. 4. A daily sample of solar and wind production data.

generate the largest amount of energy at around noon, while producing
zero energy at night. On the other hand, the wind system generate more
power at night. We also observe that seasonally, solar power production
is high in the summer and low in the winter. Overall, the power
production from the solar plants is larger than the power generated
by the wind farms in this case study. Curtailment often occurs when
the power production is unexpectedly large. For example, in April 17,
2018, about 15% of solar power production was curtailed.

Here we note that the Duck curve in Fig. 1, can be directly recovered
from subtracting wind and solar power generation from the total load,
i.e., the net load. Also, we recall that in order to supply the large rump-
up of energy caused by the Duck curve (at around 3 pm) the California
ISO runs conventional plants at low generation capacity at noon.

5.2. Illustration of FPCA prediction

Fig. 5 presents the FPCA prediction results for wind and solar power
production for April 27. The horizontal axis denotes time of day in
minute scale and the vertical axis denotes power output from the farm.
The prediction is made, based on observed data within the day. For
example, in the left figure, data up to 4:10 AM (250 min) is known
and the FPCA model uses this information to predict the days trend.

We observe that FPCA can yield competitive predictions over the
entire horizon. At the 4:10 AM, the trend still follows the overall
population mean. This is intuitively understandable as few data is
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Fig. 5. FPCA prediction results for wind+solar production.
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collected at that day. However, as more data is gathered, predictions
are individualized and reflect better the day at hand. This can be seen
from predictions after 500 min elapsed throughout the day. Also notice
that as more data is gathered, the predictive distribution becomes
more accurate and more concentrated; hence the previously mentioned
notion of automatic selection of the relevant scenarios.

5.3. Benchmark methods and evaluation metrics

For our non-myopic approach with FPCA predictions, we compare
three alternatives of our model. Those are:

• Expectation approach given in (12).
• Scenario approach given in (22).
• Robust approach given in (26).

We also benchmark with

• Non-myopic approach with perfect forecast: We assume that 𝑆(𝑡)
is fully known ∀𝑡 ∈ {0,… , 𝑇 − 1} and denote the deterministic
function as 𝑆true(𝑡). We then optimize the objective in (12) at
𝑡0 = 0 to obtain 𝒙∗(0) = {𝑥∗1(0),… , 𝑥∗1(𝑇 − 1)}. Note that no
updating is performed in this approach, since 𝑆(𝑡) is known and
thus the initial set of decisions 𝒙∗(0) are optimal.

• Myopic approach with perfect forecast: The charging/discharging
decision at time 𝑡0 is made with only the knowledge of the farm
output observation 𝑆(𝑡0), but no future information is taken into
consideration. In other words, the problem is solved by taking a
snapshot of the system. To do this the sum notation in (12) is
removed and the ‘‘𝑡 = 𝑡0,… , 𝑇 −1’’ in the constraints are replaced
by ‘‘𝑡 = 𝑡0’’. This one-period linear programming is easy to solve.
Its decision can be stated as:

– When the farm output 𝑆(𝑡0) is greater than the promised
output 𝐾(𝑡0) and the battery is not yet full, the battery is
charged until the overall output 𝑆(𝑡0) + 𝑥1(𝑡0) equals the
promised output 𝐾(𝑡0) or the battery becomes full.

– When the farm output 𝑆(𝑡0) is less than the promised output
𝐾(𝑡0), and if the battery is not yet empty, the battery is
discharged until the overall output 𝑆(𝑡0) + 𝑥1(𝑡0) equals the
promised output or the battery becomes empty.

– No charging/discharging action is made if the two rules
above are not satisfied.

• Myopic approach with FPCA forecast: This is similar to the prefect
forecast one, but without knowing the true observation of the
farm output at 𝑡0. Instead FPCA is used to predict 𝑆(𝑡0). Note that
here any of the expectation, robust or scenario approaches can be
7

used to obtain decisions. h
A regret ratio metric is defined to compare model performance. We first
define regret 𝑓 ∈ 𝑅+ as the total cost incurred from excess production
and shortage from time 0 to 𝑇 − 1

𝑓 =
𝑇−1
∑

𝑡=0
[𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) ⋅max{0, 𝑆𝑡𝑟𝑢𝑒(𝑡) + 𝑥∗1(𝑡) −𝐾(𝑡)}

+ 𝑐𝑠𝑝𝑜𝑡(𝑡) ⋅max{0, 𝐾(𝑡) − 𝑆𝑡𝑟𝑢𝑒(𝑡) − 𝑥∗1(𝑡)}]. (23)

Given, (23), it is clear that the non-myopic method under perfect
forecast considers the most accurate and largest amount of information,
as it optimizes over a long-term horizon with perfect knowledge of the
supply evolution. Based on this, regret ratio is defined as

regret ratio =
𝑓 − 𝑓0
𝑓0

, (24)

where 𝑓0 denotes the cost of the reference method. Note that for
simplicity of interpretation, but without loss of generality, we use the
zero terminal cost.

5.4. Settings

The following parameters are set.

𝐾(𝑡) 7500 MW
𝐵(1)
𝑚𝑖𝑛 1500 MWh

𝐵(1)
𝑚𝑎𝑥 15,000 MWh

𝐵1(1) 7500 MWh
𝐿1 9000 MWh
𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒 0.50
𝜌 1

The spot price, 𝑐𝑠𝑝𝑜𝑡(𝑡), varies over time. Usually the electricity price
s high in the early morning and evening because the demand is high
nd production is lower. We use the average 5-minute ahead marginal
rices in the California electricity market available in [34]. Fig. 6
resents the used market price.

. Proof of concept: Effect of look-ahead planning

This section presents a proof of concept that illustrates the advan-
age of look-ahead planning. To this end, we only consider the non-
yopic and myopic methods under perfect forecast. We understand

hat the perfect forecast assumption is not realistic, but it eliminates
rediction errors so we can gain useful insights on how the proposed
orward-looking approach affects the decision-making process. Note

ere that since predictions are deterministic, only the expectation
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Fig. 6. 𝑐𝑠𝑝𝑜𝑡 and 𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒 over the day.

Table 2
Regret ratios for the myopic method under two different spot price scenarios in Figs. 7
and 8.

Varying spot price Constant spot price

8.42% 0%

approach can be used. In addition, the discounting factor is set to 𝜌 = 1.
s a result, the difference between both methods is purely caused by

he far-horizon information.
We consider two different scenarios on the spot price. Fig. 7 depicts

he results for the non-myopic and myopic methods under the perfect
orecast assumption with varying spot prices obtained in [34], whereas
ig. 8 considers a constant spot price at 𝑐𝑠𝑝𝑜𝑡 = 3. The horizontal axis is
ime and the vertical axis is energy output. The dashed horizontal line
mplies the committed energy by the farm (e.g., decided from the day-
head unit-commitment). The blue curve is the power generated from
he wind/solar power plant and the red curve represents the amount
f energy withdrawn from the battery. The black curve is the farm
utput 𝑆1(𝑡) which is equal to the wind/solar (𝑆(𝑡)) plus the battery
harge/discharge amount 𝑥1(𝑡). Table 2 provides the regret ratio of the
yopic approach, compared to the non-myopic approach in Figs. 7 and
.

The curves in the figures explains how the objective function,
.e. the overall cost from excess production and shortage, is calculated.

hen the black solid curve is above the black dashed line, the overall
utput from the farm is higher than the committed amount, so the farm
hould salvage the excess production, incurring the salvage cost. The
alvaged energy is marked in green area in each figure. On the other
and, when the black solid line is below the black dashed line, the
verall output from the farm is lower than the promised amount, so
he farm purchases energy from the electricity spot-market to fill the
ap, which is marked as yellow in each figure. To be more specific, let
s split the 24 h into three periods: (i) before 9:00, (ii) 9:00 to 17:30,
nd (iii) after 17:30. In the first and the third periods, the wind and
olar output is lower than the promised amount of energy. In the second
eriod, the wind and solar output is higher. Therefore, we observe that
attery discharging (when red lines are above zero) occurs in periods (i)
nd (iii), while battery charging (when red lines are below zero) occurs
n period (ii), except to the time between 1:00 to 2:00 in Fig. 7(a).

Interestingly, Figs. 7(b) and 8(b) are identical. It means that the
pot price does not affect the myopic method. In both subfigures, the
ecisions are to immediately charge (or discharge) the battery to meet
he promised output until the battery is full (or empty). After the
attery reaches zero (or full) capacity, the farm starts purchasing or
8

salvaging energy. The overall cost from Fig. 7(b) is higher than that
in Fig. 8(b), simply because the varying spot price in Fig. 6 is always
higher than the constant spot price 𝑐𝑠𝑝𝑜𝑡 = 3.

Another interesting aspect is that Fig. 8(a) and (b) have the same
overall cost, causing 0% regret ratio, even though the shape of the
curves is different. This result confirms that if the spot cost is constant
throughout the day, then myopic and non-myopic algorithms will lead
to the same cost. Despite the different shapes, the decisions in Fig. 8(a)
and (b) share some common features: during periods (i) and (iii) the
battery is discharged until it becomes empty, and it is charged to full
capacity in period (ii), because in this way the size of yellow and green
areas, which incur cost to the farm, can be minimized. Since the spot
and salvage prices are constant over time, the overall costs generated
by energy purchase (shown as yellow areas) and energy salvage (shown
as green areas) are the same in the two methods. However, the dif-
ference is that, because the non-myopic method in Fig. 8(a) considers
information in the far horizon, it averages the remaining energy (or the
remaining capacity) in the battery to the whole period. Therefore, the
curves in Fig. 8(a) are smoother when compared to those in Fig. 8(b).

Lastly, Figs. 7(a) and 8(a) share identical results in period (ii), be-
cause the salvage costs are the same (and constant) in both subfigures.
However, the decisions in period (i) and (iii) are different. In Fig. 7(a),
because the spot price is varying, the non-myopic method purchases
less (or more) energy when the spot price is high (or low). As we
can observe, battery is discharged and no energy is purchased during
0:00 to 1:00, 5:00 to 9:00, and 19:00 to 22:00, when the spot price is
relatively high. When the spot price is low, energy is purchased through
the spot market to fulfill the committed energy output. During 1:00 to
2:00, because the spot price is low, the farm decides to purchase energy
and charge them into the battery. On the other hand, in Fig. 8(a),
because the spot price is constant, the farm has the same cost whenever
it purchases energy.

From the above discussions, we can understand the differences
between both approaches and the benefits of the non-myopic approach.
In summary, during periods (i) and (iii) the decision in Fig. 7(a) incurs
much less cost because the non-myopic method considers the future
information and price changes. In period (ii), the curves in Fig. 7(a)
are smoother because of the non-myopic property and the constant
salvage price. On the other hand, when the spot and salvage prices
are all constant, both the non-myopic and myopic approaches incur
the same cost even though the decisions over time differ, as shown
in Fig. 8(a) and (b). These results suggest that the non-myopic property
can help decrease the farm’s cost if the unit cost of purchasing or salvaging
energy is changing in the future.

7. Case study results

The proof of concept was done under perfect predictions. Here we
observe the results in a real-life setting where FPCA forecasts are used
to obtain predictions. Tables 3–6 compare the regret ratios for non-
myopic and myopic methods (expectation, robust and scenario based
methods) under varying spot prices and 𝜌 = 0.999. The results are
shown in terms of regret ratios over multiple days in April 2018. As the
load pattern during weekdays are different from that on weekends, we
focus our implementation on weekdays, so the analysis for weekends
(e.g., April 21, 22, 28 and 29) are omitted. In addition, Table 7 sum-
marizes the running time of each approach using a standard desktop
computer. An illustration of the expectation method performance with
varying spot prices with a discounting factor 𝜌 = 0.999 is given in Fig. 9.

Many interesting insights can be derived from the Tables:

• First and most importantly, no matter which optimization formu-
lation is used, a non-myopic framework can significantly decrease
regret and hence operational costs. This in turn confirms the ad-
vantageous properties of our dynamic and non-myopic framework

that can be applied under different inference procedures.
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Fig. 7. Results with varying spot prices and no discounting factor, i.e. 𝜌 = 1, under perfect forecast.
Fig. 8. Results with constant spot prices and no discounting factor, i.e. 𝜌 = 1, under perfect forecast.
• Second, interestingly, we observe that the scenario-based ap-
proach is able to slightly outperform the expectation-based ap-
proach when the number of scenarios is large. This is intuitively
understandable because it can account for prediction uncertainty
with multiple scenarios (rather than using one expected tra-
jectory in the expectation-based approach) within our decision
framework. The caveat, however, is that accounting for such un-
certainty comes at the expense of increased computational times.
For instance, the running time to make storage decisions increases
from around 2.4 min to 28 min (refer to Table 7) when switching
from expectation-based formulation to the scenario-based formu-
lation with 10 scenarios. For the 5-min time interval considered in
this study, Scenario-10 is hence an unfeasible option. We can also
imagine that the scenarios-based approach is not scalable to solve
large-scale problems with multiple renewables and batteries.

• Third, the Robust approach leads to worst case regret. This is ex-
pected, as we are taking decisions under worst case supply scenar-
ios. The Robust approach provides very conservative decisions,
increasing operational costs.

• Finally, from these results, while the proposed framework is
flexible enough to include different optimization formulations,
the expectation approach appears to be most adequate in terms
of operational cost and running time.

Fig. 9 also echoes our results. Through comparing Fig. 9(a) and
9

b), we observe the benefit of far-horizon planning where in period
(i), the farm purchases more energy when the spot price is low and
uses it when the spot price is high. This results in a smaller regret (or
cost), compared to the myopic approach (see Tables 3 and 4). Also,
in comparison with the non-myopic approach under perfect forecast
(Fig. 7(a)), we find that the major difference happens in period (ii),
where the salvaging happens only in the later part of the period in
Fig. 9(a). This difference is due to the use of a discount factor in this
setting. Since, the unit cost of salvaged energy is 𝜌𝑡−𝑡0 𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒, which is
decreasing over time 𝑡. Thus, in period (ii), the farm prefers to salvage
its excess energy later, when the unit cost is lower.

8. Conclusion

This paper presents a practical and easy to implement methodology
for managing the output of a wind/solar farm in a cost effective and
real-time manner. Our problem aims at deciding the amount of energy
charged into, or withdrawn from, a battery, considering the time-
varying nature in the renewable energy output. A salient aspect of our
formulation is that it enables real-time updating of a joint predictive–
prescriptive model where forecasts of energy outputs over the future
horizon are used to update decisions. This scheme is enabled via
FPCA which accounts for data heterogeneity, safeguards against model
mis-specification via non-parametric predictions, and features a linear
decomposition which in turn enables efficient real-time updating. We
show that our scheme is flexible to different optimization schemes; be

it stochastic, robust or even a deterministic approach. Our technology
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Fig. 9. Results with varying spot prices and a discounting factor 𝜌 = 0.999.
able 3
on-myopic approach: regret ratio with varying spot prices and discounting factor
𝜌 = 0.999).
Non-myopic Expectation Scenario Scenario Scenario
approach 2 5 10

Apr 17, 2018 9.35% 10.62% 9.34% 7.93%
Apr 18, 2018 1.76% 1.75% 1.39% 1.26%
Apr 19, 2018 15.01% 16.79% 13.77% 12.98%
Apr 20, 2018 12.16% 13.12% 10.80% 10.38%
Apr 23, 2018 3.65% 4.08% 3.42% 3.37%
Apr 24, 2018 6.01% 6.57% 5.21% 5.11%
Apr 25, 2018 7.11% 8.30% 6.22% 6.17%
Apr 26, 2018 6.22% 9.88% 7.15% 5.31%
Apr 27, 2018 6.45% 10.25% 7.60% 5.92%
Apr 30, 2018 4.38% 7.06% 5.67% 4.93%

Average 7.21% 8.84% 7.06% 6.34%

Table 4
Myopic approach: regret ratio with varying spot prices and discounting factor (𝜌 =
.999).
Myopic Expectation Scenario Scenario Scenario
approach 2 5 10

Apr 17, 2018 10.46% 10.36% 10.36% 10.36%
Apr 18, 2018 9.70% 10.03% 9.77% 9.70%
Apr 19, 2018 14.53% 14.81% 14.59% 14.56%
Apr 20, 2018 18.34% 18.61% 18.42% 18.52%
Apr 23, 2018 9.47% 9.56% 9.48% 9.53%
Apr 24, 2018 13.13% 12.94% 12.90% 13.01%
Apr 25, 2018 10.56% 10.56% 10.53% 10.53%
Apr 26, 2018 11.08% 11.37% 11.17% 11.18%
Apr 27, 2018 10.11% 10.34% 10.02% 10.20%
Apr 30, 2018 10.69% 10.74% 10.77% 10.73%

Average 11.81% 11.93% 11.82% 11.83%

is then tested on the California ISO dataset [33]. This case study
provided a proof-of-concept that highlights both the benefits and ease
of implementation of our forward looking framework.

Our model can be extended in various directions. For instance,
one may consider the battery degradation over time by providing a
predictive model to update the capacity limits, much like how FPCA is
predicting supply. In addition, planning decisions for optimal needed
battery capacity is an important problem, in particular, with large
penetration of volatile renewable energy in the electricity market. Such
a problem might benefit from a non-myopic approach such as ours,
especially since FPCA can handle both short and long term predictions
as long as all historical and to-be predicted functions share the same
domain. We hope to work on such challenges in the future.
10
Table 5
Non-myopic approach: regret ratio with varying spot prices and discounting factor
(𝜌 = 0.999).

Non-myopic Expectation Robust Robust Robust
approach 2 5 10

Apr 17, 2018 9.35% 10.48% 10.49% 10.45%
Apr 18, 2018 1.76% 10.05% 10.05% 10.24%
Apr 19, 2018 15.01% 14.61% 14.82% 14.81%
Apr 20, 2018 12.16% 18.64% 18.55% 18.82%
Apr 23, 2018 3.65% 9.53% 9.73% 9.71%
Apr 24, 2018 6.01% 13.10% 13.54% 13.51%
Apr 25, 2018 7.11% 10.27% 10.65% 10.77%
Apr 26, 2018 6.22% 11.34% 11.65% 11.74%
Apr 27, 2018 6.45% 10.33% 10.53% 10.56%
Apr 30, 2018 4.38% 10.81% 10.85% 10.91%

Average 7.21% 11.95% 12.09% 12.15%

Table 6
Myopic approach: regret ratio with varying spot prices and discounting factor (𝜌 =
0.999).

Myopic Expectation Robust Robust Robust
approach 2 5 10

Apr 17, 2018 10.46% 10.42% 10.57% 10.53%
Apr 18, 2018 9.70% 9.86% 9.76% 9.82%
Apr 19, 2018 14.53% 14.48% 14.40% 14.37%
Apr 20, 2018 18.34% 18.69% 18.61% 18.57%
Apr 23, 2018 9.47% 9.45% 9.48% 9.48%
Apr 24, 2018 13.13% 12.84% 12.88% 12.91%
Apr 25, 2018 10.56% 10.54% 10.50% 10.56%
Apr 26, 2018 11.08% 11.06% 11.07% 11.07%
Apr 27, 2018 10.11% 10.19% 10.18% 10.16%
Apr 30, 2018 10.69% 10.68% 10.72% 10.69%

Average 11.81% 11.82% 11.82% 11.82%

Table 7
Average computational time for all approaches.

Proposed methods Running time (s)

Myopic Non-Myopic

Expectation 0.001 145.21
Scenario 2 2.07 60.16
Scenario 5 2.10 332.92
Scenario 10 2.37 1676.10
Robust 2 2.26 73.85
Robust 5 2.42 428.36
Robust 10 2.66 2199.4
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ppendix A. Robust approach

in max
𝑖

{

𝑇−1
∑

𝑡=0
𝜌𝑡 ⋅ [𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) ⋅ (𝑂(𝑖)

𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) + 𝑂(𝑖)
𝐵 (𝑡))

+𝑐𝑠𝑝𝑜𝑡(𝑡) ⋅ (𝑂
(𝑖)
𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) + 𝑈 (𝑖)

𝐵 (𝑡))] + 𝜌𝑇𝛷(𝐵𝑖(𝑇 ))
}

, (25)

In LP formulation,

min𝐹 ,

𝑠.𝑡. 𝐹 ≥
𝑇−1
∑

𝑡=0
𝜌𝑡 ⋅ [𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒(𝑡) ⋅ (𝑂(𝑖)

𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) + 𝑂(𝑖)
𝐵 (𝑡))

+𝑐𝑠𝑝𝑜𝑡(𝑡) ⋅ (𝑂
(𝑖)
𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒(𝑡) + 𝑈 (𝑖)

𝐵 (𝑡))] + 𝜌𝑇𝛷(𝐵𝑖(𝑇 )) (26)

ther constraints remain the same as scenario-based approach (22).

ppendix B. FPCA considerations

Functional regression methods are often vulnerable in outliers [35].
ur FPCA model can also exhibit sensitivity when data contains out-

iers. For example, the Bayesian updating scheme above may lead
o inaccurate predictions if recent observations stray away from the
reviously observed trends. To deal with this issue, we adopt a simple
trategy. First, we smoothen the curves to alleviate local fluctuations.
e used a Gaussian kernel smoother in our numerical study, but

ther smoothers can be employed. Next, if an observation lies outside
ur 3-sigma prediction interval, we ignore it and wait until the next
bservation to update our model. If ℎ consecutive recent observations
re out of the 3-sigma limits we relax this restriction.
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