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A B S T R A C T   

The lack of thermal comfort among occupants is a common problem in built environments. Recent studies have 
investigated various physiological sensing and modeling approaches and demonstrated more robust thermal 
comfort prediction than the Predicted Mean Vote and participatory sensing methods. However, such physio-
logical sensing approaches only work with iterative and passive Heating, Ventilation, and Air Conditioning 
(HVAC) control schemas which can lead to problems including uncertainties in setpoint control outcomes and 
interruptions to building occupants. To address this critical limitation, this paper proposes a new paradigm 
named Human Embodied Autonomous Thermostat (HEAT) that considers human occupants as an embodiment of 
smart and connected thermostats where physiological measurements in form of facial skin temperature can be 
used to directly communicate with and control HVAC operations for improved thermal satisfaction and reduced 
energy use while maintaining comfort in multi-occupancy spaces. This paradigm leverages occupants’ skin 
temperature responses under different thermal environments and integrates two types of personal models - 
thermal comfort model and physiological predictive model to determine occupants’ comfort, which can be 
represented as the thermal comfort zone and comfort probability. Based on these two metrics, three HVAC 
strategies are compared to demonstrate thermal comfort optimization for a group of occupants. The result 
suggests different setpoint options as a trade-off between overall comfort and energy use. The proposed HEAT 
framework can conceptually make wall-mounted physical thermostats redundant by serving as a basis for 
automated environment control based directly on human measurements to improve personalized human expe-
rience, well-being, and building energy efficiency.   

1. Introduction 

Thermal comfort among building occupants is an influential factor in 
human satisfaction, health, and well-being. Lack of thermally comfort-
able environments can lead to several problems including sick building 
syndrome, complaints, absenteeism, and reduced work productivity 
[1–4]. However, understanding thermal comfort is a challenging task as 
both human and environmental factors affect people’s thermal sensa-
tions and preferences [5]. This problem is exacerbated in 
multi-occupancy environments where thermal comfort not only evolves 
within each occupant but also varies from one person to another. 
Therefore, static Heating, Ventilation, and Air Conditioning (HVAC) 
operation strategies recommended by industry guidelines (e.g., ASH-
RAE) can fail to provide an optimum thermal environment, i.e., an 
environment that keeps as many occupants comfortable as possible, if 
not all. 

To address this research problem, this paper proposes the Human 
Embodied Autonomous Thermostat (HEAT) framework where occu-
pants act as thermostats carrying their personal thermal profiles into a 
shared space (e.g., offices). This framework allows the thermal envi-
ronment to be automatically optimized based on the profiles detected in 
the space to improve overall satisfaction and wellness without humans 
interacting with a physical thermostat. The proposed framework con-
sists of two components: (1) thermal comfort sensing, which develops 
personal comfort models to interpret the comfort state of each occupant; 
and (2) thermal comfort optimization, which determines the optimum 
setpoint for a given group of occupants. 

The remaining sections of this paper are organized as follows. Sec-
tion 2 reviewed the existing literature on thermal comfort sensing and 
optimization and highlighted their limitations. Section 3 summarized 
the objectives of this paper. Section 4 presented the methodology of the 
HEAT framework. Section 5 compared three setpoint optimization 
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strategies using the experimental data. Section 6 discussed the results 
and research implications. Finally, Section 7 concluded the paper. 

2. Background 

Existing literature investigated thermal comfort sensing approaches 
to understand occupants’ thermal comfort, such as the Predicted Mean 
Vote (PMV) model, adaptive model, human participatory sensing, and 
personal comfort model. These sensing approaches can be applied in 
multi-occupancy spaces to achieve a real-time evaluation of the overall 
thermal environment. Following the sensing step, various HVAC control 
strategies can be implemented to determine the optimum setpoint for 
improved thermal comfort and satisfaction. 

2.1. Thermal comfort sensing 

Industry standards in thermal comfort originated from the static 
PMV model which was based on the thermal transfer between the 
human body and environments [6]. Later, De Dear and Brager [7] 
proposed the adaptive model and suggested that occupants’ behavioral 
and psychological adaption in naturally ventilated buildings can lead to 
a wider range of acceptable temperature than the PMV prediction. 
However, these two classic approaches are unable to reflect the 
“personalized” nature of thermal sensation and preference as they are 
both developed from the responses of a large group of human subjects. 

With the rapid development of wireless sensor network, mobile de-
vices, and ubiquitous computing, researchers also explored participa-
tory sensing approaches, which assess thermal conditions using 
environmental data and the corresponding human feedback (e.g., Refs. 
[8–12]. This is also known as the “human-in-the-loop” approach which 
brings occupants’ actual thermal sensations into the HVAC control 
process. In these approaches, thermal comfort is typically modeled using 
only environmental parameters. For example, Feldmeier and Paradiso 
[10] applied linear discriminant models to classify thermal sensations 
based on room temperature and humidity. Daum et al. [8] developed 
comfort models using logistic regression, which represents the comfort 
probability at different room temperatures. Similarly, Jazizadeh et al. 
[11] developed fuzzy models to describe the comfort probability as a 
function of room temperature. However, these participatory sensing 
approaches fail to consider the role of human physiological and 
behavioral factors in affecting thermal comfort, which may result in a 
less robust comfort prediction [13,14]. For example, the same individual 
with different workloads can have direct opposite thermal preferences in 
the same environment. Also, these approaches rely on continuous 
feedback from occupants to rectify comfort predictions or determine 
future setpoints, which is interruptive in real applications. For a detailed 
discussion about participatory sensing and its limitations, please refer to 
Li et al. [15]. 

To address the limitations in the above comfort sensing approaches, 
personal comfort models which leverage human physiological data have 
gained much attention in recent years [14–24,41,42]. This approach 
maps real-time human physiological data, such as skin temperature, 
heat flux, respiration, and heart rate collected from the human body, 
into a prediction of thermal comfort. In this paradigm, each personal 
model captures the “individual differences”. In other words, personal 
models only represent the corresponding “training person” and are not 
intended to extrapolate to other people or an “average person”. Studies 
such as Aryal and Becerik-Gerber [16]; Jung et al. [13]; and Li et al. [14] 
suggested that physiological sensing-based comfort models can achieve 
better prediction accuracy than models which only consider environ-
mental data and have the potential to reduce the intrusiveness caused by 
human participation. 

Among various human physiological signals, skin temperature has 
been widely adopted in existing literature as it is directly associated with 
thermoregulatory behaviors of the human body (e.g., vasodilation and 
vasoconstriction) under thermal stimuli. In practice, skin temperature 

can be collected from contact thermocouples [17,25], contact-less 
infrared thermometers [16,19], and thermal cameras [15,16,26]. 
Typical body parts for skin temperature measurement include wrists 
[14,16,24], hands [17,25], and faces [15,19,26]. Particularly, 
non-intrusive approaches have been proposed for comfort sensing using 
facial thermography collected from low-cost thermal cameras [15,23, 
27]. For details about the instruments and measurement accuracy, 
please refer to Ref. [15]. 

2.2. Thermal comfort optimization 

Once the overall thermal comfort in a built environment is evaluated, 
a closely related question may arise, which is, how to adjust HVAC 
settings to optimize the overall thermal comfort and satisfaction? This 
question has been investigated in existing literature such as Daum et al. 
[8]; Deng and Chen [18]; Erickson and Cerpa [9]; Feldmeier and Para-
diso [10]; Jazizadeh et al. [11]; Jung and Jazizadeh [28]; Li et al. [14]; 
and Purdon et al. [12]. The main strategy adopted in these studies is 
adjusting thermostat setpoints to increase or decrease room tempera-
ture. This is because room temperature directly and significantly affects 
the perceived thermal comfort compared to other environmental factors, 
such as relative humidity, and can be easily controlled by the thermostat 
[29]. Also, studies observed that variations in relative humidity are a 
byproduct of setpoint adjustment in real operational environments 
where relative humidity shows a negative correlation with room tem-
perature [13,23]. Moreover, room temperature can be measured by 
regular temperature sensors, which are low-cost compared to 
black-globe thermometers for mean radiant temperature. As a result, 
only room temperature setpoint is considered as a control variable in 
many HVAC strategies. 

In general, existing studies that aim to optimize the setpoint for 
improved thermal comfort can be summarized into two categories: (1) a 
passive and iterative control process which implements a corrective 
temperature in each step; and (2) a closed-form optimization that at-
tempts to achieve the optimum setpoint in one step. 

Studies in the former category typically leverage the feedback or 
thermal vote from occupants over time. For example, Erickson and 
Cerpa [9] calculated the corrective temperature using the PMV model to 
offset discomfort votes received in each decision cycle, which is set at 10 
min. This corrective temperature then updated the current setpoint to 
provide additional heating or cooling to restore a thermally neutral 
state. Purdon et al. [12] also leveraged this voting mechanism (e.g., � 1 
for cooler, 1 for warmer) where the net vote, i.e., the sum of votes from 
all occupants, was calculated in each cycle. The room temperature will 
decrease by a fixed step of 1 �C for a negative net vote, which indicates a 
lower temperature is preferred, and vice versa. In Li et al. [14]; occu-
pants’ personal comfort models were applied in the HVAC control loop 
to update the setpoint. If a negative or positive net thermal vote was 
collected in a decision cycle (i.e., every 30 min), the control algorithm 
will evaluate the new setpoint (i.e., previous setpoint �1 �C) using each 
occupant’s comfort model. A corrective temperature will be imple-
mented if more occupants were predicted comfortable under the new 
setpoint. As discussed in these three example studies, this HVAC control 
schema is an iterative process as continuous corrective steps are needed 
when occupants provide new thermal votes. This is also a passive pro-
cess as it is unable to proactively determine the optimum setpoint for the 
future. As a result, this schema can lead to longer discomfort time due to 
its trial-and-error nature and also make the setpoints oscillate over time, 
which may lead to energy waste. 

Another category of HVAC control strategy uses environmental 
factor-based comfort models to find a closed-form solution for the op-
timum setpoint [28,30]. In this schema, as comfort models directly 
associate room temperature with thermal comfort, a closed-form solu-
tion, which outputs the optimum setpoint that maximizes an objective 
function (e.g., the number of comfortable occupants), can be directly 
obtained [8,11,28]. For example, Jung and Jazizadeh [28] compared 
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three HVAC control strategies in determining the optimum setpoint. In 
this study, personal comfort models, which measure the probability of 
being comfortable (i.e., comfort probability) as a function of room 
temperature, are developed using the Gaussian distribution. Specif-
ically, this study introduced the concept of thermal sensitivity, i.e., the 
increased or decreased comfort probability caused by variations in room 
temperature. Using this metric, the optimum setpoint is chosen to 
maximize the sum of comfort probability of all occupants. This study 
provides useful insights into the HVAC control by addressing the opti-
mization problem in a probabilistic view and considering the different 
thermal sensitivities to hot and cold stimuli. 

However, the one-step HVAC optimization strategies such as Jung 
and Jazizadeh [28] cannot directly integrate with human physiological 
sensing-based comfort models. In this case, a major challenge should be 
addressed - the uncertainties in occupants’ thermal comfort under a new 
setpoint, which result from the unknown effect of updated thermal en-
vironments on human physiological parameters. For example, in a sce-
nario where skin temperature is used for comfort prediction, personal 
comfort models can continuously predict the thermal preference or its 
probability as long as a new skin temperature measurement is collected. 
If these models predict “occupants prefer warmer” and the setpoint is 
increased by a fixed step (e.g., 1 �C) accordingly, it is unknown how 
much people’s skin temperature will be affected by this adjustment, 
resulting in uncertainties in setpoint control outcomes. In other words, 
physiological sensing-based comfort models enable evaluations of cur-
rent comfort state but cannot make predictions about the future. 
Therefore, it only works with the iterative and passive HVAC control 
strategy introduced above. 

Fig. 1 illustrates this problem using an example environment occu-
pied by three occupants (denoted as id1, id2, and id3). In this example, 
the setpoint is initially set at 24 �C at time t. Occupants’ physiological 
data at time t are collected (denoted as Tt

id1, Tt
id2, Tt

id3), and predictions 
show that two of them prefer a warmer environment and one prefers a 
cooler environment. As a result, the system decides to increase the set-
point by 1 �C, which will be implemented at time tþ 1. However, as the 
impact of this adjustment on the physiological parameter is unknown at 
time t, the system has no knowledge about occupants’ future physio-
logical conditions at time t þ 1 (denoted as Ttþ1

id1 , Ttþ1
id2 , Ttþ1

id3 ), and thus 
fails to predict future thermal comfort states that will result from this 
adjustment. Therefore, three possible outcomes of this adjustment (i.e., 
increase the setpoint by 1 �C) can be encountered at time tþ 1 including 
an insignificant control (the majority still prefer warmer), a promising 

control (the majority now feel comfortable), and an overshoot control 
(the majority start to prefer cooler). If either the insignificant or over-
shoot outcome occurs, then an additional adjustment has to be imple-
mented by using the current physiological data at time tþ 1, and its 
corresponding impact is unknown until time tþ 2. 

Also, existing optimization strategies typically associate each occu-
pant with a single and fixed comfort zone (e.g., occupant #1 is always 
comfortable when room temperature is between 23 and 26 �C) [8,11, 
28], which fails to acknowledge the same occupant can have different 
comfort zones as his/her physiological states change over time (see 
Fig. 2). A promising approach to address this limitation is to include 
human factors to indicate an occupant’s current physiological state [14], 
and then determine the optimum setpoint based on the comfort zone 
associated with the identified state. 

Therefore, to address the limitations in existing studies and achieve a 
proactive HVAC control, it is important to consider human physiological 
data and also understand the impact of room temperature variations (or 
other environmental variables if applicable) on physiological parame-
ters in the personal comfort model. To this end, this paper presents an 
approach to predict occupants’ future physiological responses and 
demonstrates its integration with personal comfort models to determine 
optimum setpoints. The objectives of this paper and the methodology 
are presented as follows. 

3. Objectives 

This study leverages the merits of physiological comfort sensing and 
fills an important research gap that prevents its integration in HVAC 
control strategies. The resulting HEAT framework can achieve a robust 
thermal comfort prediction through physiological sensing and proac-
tively determine the optimum setpoint of multi-occupancy environ-
ments. The specific objectives of this paper include:  

� Demonstrate how to integrate physiological predictive models and 
personal comfort models to evaluate an occupant’s comfort (i.e., 
thermal comfort zone or comfort probability) under a new setpoint, 
particularly when the physiological sensing is adopted.  
� Develop a modeling approach to interpret human physiological 

states (e.g., skin temperature) under different environmental condi-
tions (e.g., room temperature). 

Fig. 1. The HVAC control steps when using physiological sensing-based models.  

D. Li et al.                                                                                                                                                                                                                                        



Building and Environment 178 (2020) 106879

4

� Demonstrate how HVAC control strategies can optimize thermal 
comfort and energy consumption in a multi-occupancy environment 
using each occupant’s thermal comfort zone and comfort probability. 

4. Methodology 

This paper uses facial skin temperature and room temperature as the 
human physiological parameter and environmental parameter, respec-
tively, to demonstrate the HEAT framework. Fig. 3 shows an overview of 
the framework, which can be decomposed into two steps including (1) 
occupants’ thermal comfort prediction using facial skin temperature, i. 
e., the “sensing” step; and (2) determination of optimum setpoints based 
on the overall comfort prediction, i.e., the “optimization” step. The 
former sensing step can be represented by a model f which maps an 
occupant’s skin temperature Tskin into his/her thermal comfort state TC 
(Eq. (1)), which can be a regression (e.g., thermal sensation with nu-
merical scales), classification (e.g., thermal preference with categorical 
scales), or a probability distribution (e.g., probability of being 
comfortable). The model g, on the other hand, is the missing physio-
logical predictive component that bridges the new setpoint Troom which 

is a possible control strategy and the projected skin temperature Tskin 
under this new setpoint (Eq. (2)). By chaining these two models f and g, 
an occupant’s thermal comfort under a new setpoint can be predicted 
with physiological sensing as an intermediate step (Eq. (3)). The ap-
proaches to develop each model are presented in the following 
subsections. 

f : Tskin→TC; (1)  

g : Troom→Tskin; (2)  

f ðgÞ : Troom→TC; (3)  

4.1. Personal thermal comfort models 

Thermal comfort prediction is typically considered as a classification 
problem, which predicts an occupant’s thermal sensation or preference 
at different conditions. As a result, personal comfort models (i.e., model 
f) can be trained using various classification algorithms including the 
Random Forest (RF), Support Vector Machine (SVM), Logistic Regres-
sion (LR), and Classification Tree (Ctree) [8,13,14,17,31–34]. Among 

Fig. 2. Determining an occupant’s thermal comfort zone based on physiological states.  

Fig. 3. An overview of the HEAT framework for thermal comfort sensing and optimization.  
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these approaches, studies such as Li et al. [32] and Kim et al. [31] 
suggested that the RF algorithm generally produces better comfort 
prediction accuracy than others. RF trains a collection of bagged deci-
sion trees using a random subset of features on each split and is robust to 
outliers and high dimensional datasets. However, one major drawback 
of RF is the low interpretability [35]. On the other hand, thermal 
comfort can also be represented in a probabilistic distribution using LR, 
Fuzzy Logic models, or Bayesian Networks when the number of features 
is small [8,11,28–30] and [36]. This approach offers significant model 
interpretability as changes in thermal comfort probability, which is a 
useful metric to determine the optimum setpoint, can be easily associ-
ated with variations in features (e.g., room temperature). As a result, this 
paper adopts LR to develop personal comfort models. However, other 
modeling approaches are also feasible and do not limit the implications 
of the results presented in this paper. 

LR uses a logistic function to predict the probability (p) that an event 
happens. The basic form of LR is shown in Eq. (4) where the log-odds of 

an event, log
�

p
1� p

�

, is modeled as a linear combination of input variables 

x’s, and coefficients β’s are estimated from the input data. LR is typically 
used to predict a binary class (e.g., an event happens or not) and an 
event is typically classified as 1 (an event happens) if the probability p is 
greater than a pre-specified threshold, e.g., 0.5 [37]. 

log
�

p
1 � p

�

¼ β0þ β1 ⋅ x1þ…þ βn⋅xn; (4) 

LR can also be generalized to predict events with multiple classes, 
which is also known as the multinomial logistic regression. In this paper, 
the input variable is occupants’ facial skin temperature, and the output 
variable is the corresponding thermal comfort which has three cate-
gorical values including uncomfortably hot, comfortable, and uncom-
fortably cold. 

To develop personal comfort models, we used the FLIR Lepton 
thermal camera to continuously measure occupants’ facial skin tem-
perature from six regions (i.e., forehead, cheeks, nose, mouth, ears, and 
neck) [15]. FLIR Lepton is a low-cost factory calibrated thermal camera 
[38]. Details about this camera and its radiometric accuracy can be 
found in Li et al. [15] and Aryal and Becerik-Gerber [16]. The experi-
mental protocol consists of three scenarios, i.e., heating, cooling, and 
steady-state conditions (see Fig. 4). Occupants’ thermal votes were 
recorded using a three-point thermal preference scale (i.e., prefer 
warmer, cooler, or neutral) every three minutes in each scenario. This 
three-point scale has been widely used in literature to represent the 
ground-truth responses for training personal models [15,16,28]. In this 
paper, data from ten participants are used to demonstrate the proposed 
HEAT framework. All participants are university students aged between 
22 and 27 and were healthy at the time of the experiment. The testbed is 
a student research office which does not have a window. The thermostat 
in the testbed can adjust the room temperature between 22 and 28 �C. 
For more details about the experiment setup, subject recruitment, and 
protocols, please refer to Li et al. [15]. 

In this paper, cheek skin temperature is adopted as an example input 
variable of personal comfort models as it is found to be indicative of 
thermal comfort in previous experiments [15]. However, other skin 
temperature features can also be used to develop these models (e.g., 

nose, ear or average across face skin temperature). 
For each subject, we collected 180 data points during the experi-

ment. It is worth noting that for personal comfort models, the sample 
size which affects model robustness is the number of data points of each 
subject, i.e., the number of feedback or thermal votes collected from 
each subject, rather than the total number of subjects. Fig. 5 shows the 
thermal votes of subjects and their corresponding cheek temperature. In 
this figure, “þ1” denotes uncomfortably cold (i.e., prefer warmer), “0” 
denotes being comfortable, and “-1” denotes uncomfortably hot (i.e., 
prefer cooler). It can be observed that subjects generally feel cold when 
their cheek temperature is low, and vice versa. However, a few excep-
tions exist in subjects 6, 7 and 8 where the cheek temperature has some 
“vacuum regions”. For example, for subject 6, the cheek temperature 
between 31 and 32 �C is not observed. This is because the dataset of each 
subject consists of three scenarios (i.e., heating, cooling, and steady- 
state). Despite similar skin temperature and thermal vote patterns 
exist in each individual scenario, the skin temperature might not be 
continuous in its full range when data from three scenarios are com-
bined. This observation can be caused by breaks between two experi-
mental scenarios (heating to cooling) when subjects’ skin temperature 
changes significantly. This situation can cause problems when using LR 
for comfort profiling, which will be discussed later in this section. 

Based on the data presented in Fig. 5, personal comfort models can 
be developed using LR. As shown in Fig. 6, the green, blue, and red 
curves represent a subject’s probability of being comfortable, uncom-
fortably cold, and uncomfortably hot respectively at different cheek 
temperatures. In this probabilistic representation, a subject is predicted 
as comfortable if the comfort probability is greater than the probability 
at the other two conditions. For example, Id 1 has an approximately 0.5 
probability of feeling comfortable when his/her cheek temperature is 
33 �C, which is higher than the probabilities of uncomfortably cold 
(probability < 0.4) and hot (probability < 0.2). Therefore, Id 1 is pre-
dicted as comfortable at this cheek temperature. Accordingly, the range 
of cheek temperature associated with the comfortable state is obtained 
(highlighted in a yellow region). As shown in Fig. 6, subjects can have 
different comfort ranges of cheek temperature. For example, subjects 3 
and 8 have a much wider range than subject 4, which indicates they may 
have a higher tolerance over the variations in room temperature. After 
developing each subject’s personal comfort model, ten-fold cross-vali-
dation is performed to obtain the classification accuracy (3 possible 
categories). The result is shown in Table 1. If the ground truth data 
(collected from occupants’ feedback during the data collection phase) 
show this person to be indeed comfortable when his/her cheek tem-
perature is 33 �C, then this prediction is correct. The sum total of correct 
predictions divided by the total number of predictions made for this 
individual determines the prediction accuracy shown in the table. 

As shown in Table 1, personal comfort models for subjects 5, 7 and 8 
have low classification accuracy. We have the following observations: 
comfort models for subjects 6 and 7 do not indicate a comfort range and 
subject 8 does not have a lower bound (see Fig. 6). This scenario results 
from the discontinuous cheek temperature data discussed above. A so-
lution to this problem is to use the skin temperature of other facial re-
gions in comfort profiling. For example, Fig. 7 shows subject 8’s comfort 
models using six different facial regions. It can be seen that both ear and 
neck models indicate a comfort range, which can be used to substitute 

Fig. 4. Experiment Protocol in Li et al. [15].  
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the cheek region. For subject 5, due to the imbalanced feedback which 
has fewer comfort votes than discomfort votes, as well as the significant 
overlap between cheek temperatures in different comfort conditions, the 
probability of being comfortable is always lower than the other two 
conditions. In other words, the LR model with a single input feature is 
not suitable for this particular subject, and more complex models such as 
ensemble models (e.g., Random Forest, XGBoost) may be considered. 

4.2. Physiological predictive models 

The physiological predictive model (i.e., model g) predicts the 
resulting skin temperature (or other physiological parameters) under 
different room temperatures, which enables personal comfort models to 
evaluate the impact of a new setpoint before implementation. In this 
model, the output variable skin temperature is affected by multiple 

factors, such as room temperature (i.e., the direct input variable of in-
terest), personal variations (i.e., skin temperature variations across 
different subjects), and the conditioning mode (i.e., under heating or 
cooling states) due to subjects’ different thermal sensitivities to hot and 
cold stress. 

The linear mixed model (LMM), also known as the hierarchical 
model, is adopted to develop physiological predictive models. Unlike the 
ordinary linear regression, LMM not only considers variations that are 
explained by input variables of interest, i.e., the fixed effects, but also 
accounts for variations resulted from random samples from the popu-
lation, which are called random effects. A matrix form of the LMM is 
shown in Eq. (5). 

y¼Xβ þ Zuþ ε; (5)  

with 

Fig. 5. Thermal votes of each subject and the corresponding cheek temperatures.  
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ueN ð0;GÞ;

where y is a vector of responses, β is the unknown vector of fixed effects, 
u is the unknown vector of random effects which is assumed to follow a 
Gaussian distribution, X and Z are the design matrices, respectively, 
corresponding to β and u, ε is a vector of error terms, G is the variance- 
covariance matrix of random effects. 

In statistical studies, human subjects are often used as a random ef-
fect as introducing this term accounts for individual differences between 

subjects [39]. In this paper, LMM lies between the ordinary linear 
regression, which uses aggregated sample data to train a single model (i. 
e., assuming each data point is independent and develop one model 
using all subjects’ data) and the fully personalized model, which sepa-
rately develops a model for each subject only using personal data. In the 
former case, the subject-to-subject heterogeneity is ignored and only the 
common patterns are captured. For the latter, on the other hand, one’s 
personalized model does not use the information from other subjects, 

Fig. 6. Personal Comfort Model for Each Subject (yellow region denotes the range of cheek temperature when a subject feels comfortable). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Prediction accuracy of personal comfort models.  

Id 1 2 3 4 5 6 7 8 9 10 

Accuracy 0.70 0.78 0.70 0.81 0.41 0.78 0.51 0.58 0.66 0.81  
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which can lead to less robust models if each subject has a small sample 
size. LMM addresses these two problems by acknowledging both dif-
ferences and commonalities among subjects [39]. As a result, for phys-
iological predictive models, LMM is adopted as subjects share 
similarities in skin temperature variations under heating or cooling 
scenarios; while for the thermal comfort prediction, personal models are 
developed as thermal votes are subjective which may vary significantly 
across subjects. 

The LMM models are developed using the R package (version 1.2). 
Subjects’ cheek temperature from heating and cooling scenarios is used 
to train physiological predictive models as the skin temperature in these 
two scenarios changes with the room temperature. Considering the 
aforementioned observations, we build the LMM for skin temperature 
prediction where human subjects are considered as a random effect, as 
follows. 

yij¼ β0 þ β1⋅Rij þ β2⋅Sij þ β3⋅RijSij þ b0 þ b1⋅Rij þ b2⋅RijSij þ εij; (6)  

where yij is the ith subject’s corresponding jth skin temperature mea-
surement at a new setpoint Rij; and Sij is the conditioning mode which is 
a binary variable (1 for cooling, 0 for heating) when the measurement is 
collected. The coefficients β0 to β3 represent the fixed effects to quantify 
the common pattern among multiple subjects, whereas b0 to b2 represent 
the random effects. Note that we include the interaction term RijSij to 
account for different slopes in response to the room temperature change. 
We add random effects to both slopes and intercepts in order to fully 
characterize the heterogeneity on how each subject’s skin temperature 
responds to the room temperature and its change. 

Fig. 8 shows the physiological predictive models for cheek temper-
ature in cooling and heating scenarios, respectively. It is worth noting 
that the models will look different if a different facial region is chosen. In 
this case, the proposed methods (Logistic Regression and Linear Mixed 
Model) can still be applied using data collected for the facial region of 
choice. In Fig. 8, The slope and intercept for each subject’s model are 

presented in figure legends where two decimal places are kept. How-
ever, this does not mean the skin temperature is measured at 0.01 �C 
level by the thermal camera. As subjects 5 to 8’s comfort models are less 
indicative (discussed in Section 4.1), physiological models of the 
remaining six subjects are retained in this figure. The RMSE of skin 
temperature prediction is 0.14 �C. The summary of fixed and random 
effects is presented in Table 2 and Table 3. 

We make two major observations. First, subjects have different skin 
temperature responses to setpoint changes. For example, subject 3 is 
most susceptible to cold stress and will decrease cheek temperature by 
0.35 �C for every 1 �C drop in room temperature; while subjects 1 and 9 
have a smaller temperature gradient of 0.19 �C. This result echoes the 
need for personalized prediction models. Second, as indicated by the 
slopes, the skin temperature sensitivity is different in cooling and 
heating scenarios even for the same subject. From our data, skin tem-
perature changes more rapidly when the room is cooling down as larger 
gradients are observed. This observation suggests that skin temperature 
varies in a smaller range in the heating scenario, which might be caused 
by the slower response time of HVAC systems in the testbed [15]. 
However, it should be noted that physiological models are only defined 
when the room temperature is between 22 and 28 �C (i.e., the range of 
room temperature in the experiment). These models may not be 
extrapolated to room temperature which is outside of this range. 

5. Thermal comfort optimization strategies 

As personal comfort models and physiological predictive models are 
developed, chaining them enables the prediction of each subject’s 
thermal comfort including (1) thermal comfort zone, i.e., the range of 
temperature setpoints that keeps a subject comfortable; and (2) thermal 
comfort probability, i.e., the probability distribution of a subject feeling 
comfortable across the feasible setpoints. Based on these two metrics, 
three comfort optimization strategies are proposed below. 

Fig. 7. Thermal comfort models for subject 8 using different facial regions.  
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Strategy 1: The optimum setpoint should maximize the percentage of 
comfortable occupants in the environment, as shown in Eq. (7): 

Setpoint* ¼ argmax
T 2 Rt

1
n

X

i
ComfortiðTÞ (7)  

where Setpoint* is the optimum setpoint selected by this strategy, Rt is a 
set of feasible setpoints in a multi-occupancy environment, n is the 
number of occupants, ComfortiðTÞ is a binary thermal comfort prediction 
for subject i, which is 1 if subject i is comfortable at a given setpoint T, 
and 0 otherwise. If multiple peaks exist, the optimum setpoint is chosen 
based on seasons, i.e., a higher setpoint for cooling seasons and vice 
versa for heating seasons. 

Strategy 2: If there are multiple peaks in the results of strategy 1, the 
optimum setpoint should also maximize the average thermal comfort 
probability in the environment, as shown in Eq. (8): 

Setpoint* ¼ argmax
T 2 R*

t

1
n
X

i
ProbiðTÞ (8)  

where R*
t is the selections of strategy 1, i.e., the range of setpoints that 

can keep most of the subjects comfortable in a multi-occupancy 

environment, ProbiðTÞ is the thermal comfort probability of subject i at a 
given setpoint T. Similar to strategy 1, the optimum setpoint depends on 
seasons if there is a tie in average thermal comfort probability. 

Strategy 3: The optimum setpoint should maximize the average 
thermal comfort probability in strategy 2 with constraints in the 
HVAC energy consumption, as shown in Eq. (9). We use the ther-
mostat setpoint as a proxy of the energy consumption. 

Setpoint* ¼ argmax
T 2 R*

t

fαComfort score � ð1 � αÞEnergy score g (9)  

with 

Comfort score ¼
P

iProbiðTÞ
max

T 2 R*
t

P
iProbiðTÞ

Energy score¼
�
�
�
�
Rbase � T
Ru � Rl

�
�
�
�

where α is the weight of thermal comfort which ranges from 0 to 1. A 
larger α implies more weight is given to thermal comfort than energy 
consumption. If α ¼ 1, strategy 3 only focuses on maximizing thermal 
comfort, which will yield the same setpoint as strategy 2. On the con-
trary, if α ¼ 0, strategy 3 focuses on making most of the occupants 
comfortable with the least energy use, which will choose the setpoint in 
R*

t that is close to the baseline setpoint Rbase. By tuning α, a trade-off can 
be found between thermal comfort and energy consumption. Ru and Rl 
are the upper and lower bound of the feasible setpoints, which are 28 �C 
and 22 �C in this paper, respectively. j⋅j is the absolute value. In this 
paper, we assumed 22 �C and 28 �C as the baseline setpoints for heating 
and cooling seasons, respectively, to represent the lowest energy con-
sumption scenarios. Other baseline setpoints can be chosen by re-
searchers for different climate zones. jRbase � Tj denotes the distance 
between the baseline setpoint and a candidate setpoint. Setpoints further 
away from the baseline indicate more energy use because additional 
cooling or heating is needed. 

The following sections demonstrate these three thermal comfort 
optimization strategies using subjects’ data discussed in Section 4. 

5.1. Thermal comfort optimization using strategy 1 

To determine the optimum setpoint, we assume the room tempera-
ture is originally set at 25 �C according to conventional settings (which is 
the median of our experimental temperature between 22 �C and 28 �C) 
in a multi-occupancy environment. All feasible setpoints are then 
searched from 25 �C to 28 �C (i.e., heating scenario) and from 25 �C to 

Fig. 8. Linear Mixed Models for Cheek Temperature in the Cooling and Heating Scenarios (left: cooling scenario11; right: heating scenario).  

Table 2 
Estimates of the fixed effects.  

Fixed effects Estimate Std. Error t value 

Intercept 26.62 0.64 41.31 
Rij  0.21 0.02 11.52 
Sij  � 0.32 0.16 � 2.00 
RijSij  0.03 0.02 1.70 

Correlation Intercept Rt  St  

Rij  � 0.690   
Sij  � 0.115 0.162  
RijSij  0.051 � 0.311 � 0.368  

Table 3 
Estimates of the random effects.  

Groups Name Std. Dev. 

Subject Intercept 2.11 
Rij  0.06 
RijSij  0.05 

Residual  0.16  
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22 �C (i.e., cooling scenario) at a step size of 0.1 �C. Although the actual 
HVAC systems may not allow a 0.1 �C adjustment, this assumption does 
not lose implications in real applications as thermal environments at two 
adjacent integer setpoints can be compared to choose the optimum and 
feasible setpoint. 

When applying strategy 1, the thermal comfort zone of each subject 
is calculated, which is denoted as the horizontal bar in Fig. 9. In this 
figure, each subject’s comfort zone is determined by first finding the 
corresponding skin temperature at a given setpoint using the physio-
logical predictive model and then evaluating the thermal comfort states 
(i.e., uncomfortably hot, comfortable, and uncomfortably cold) through 
the personal comfort model. If the probability of being comfortable is 
the highest, this setpoint is added to the subject’s comfort zone. Once all 
subjects’ comfort zones are identified, the optimum setpoint will be 
selected to pass as many comfort zones as possible in a multi-occupancy 
environment. As shown in Fig. 9, for the six subjects in our experiment, 
25.3 �C and 25.4 �C are selected as all subjects are comfortable at these 
two setpoints. 

5.2. Thermal comfort optimization using strategy 2 

For strategy 2, thermal comfort probabilities (i.e., the probability of 
being comfortable) are calculated in addition to thermal comfort zones. 
Thermal comfort probabilities are denoted as bell curves in Fig. 10. The 
average comfort probability can be obtained by averaging the proba-
bility distributions of all subjects (denoted in the black dash-dotted line). 
As strategy 1 suggests both 25.3 �C and 25.4 �C (i.e., R*

t ) yield the same 
number of comfortable subjects, the average comfort probabilities at 
these two setpoints are then compared. As setpoint 25.4 �C yields a 
higher average comfort probability than 25.3 �C, it is selected as the 
optimum setpoint for these six subjects. 

5.3. Thermal comfort optimization using strategy 3 

For strategy 3, two components, including a comfort score and an 
energy score, need to be calculated. The comfort score (Comfort score), 
which ranges from 0 to 1, is the overall comfort probability at a given 
setpoint over the highest comfort probability achieved in range R*

t . The 
energy score (Energy score), which also ranges from 0 to 1, is the abso-

lute value of the setpoint deviation from the baseline over the range of 
possible setpoints. 

As R*
t for the six subjects only includes two possible setpoints in the 

previous example (i.e., 25.3 and 25.4 �C), we used three subjects (sub-
jects 1, 2, and 3) to demonstrate strategy 3 as a wider common comfort 
zone can be obtained. Fig. 11 shows the comfort zone (i.e., R*

t 2 ½24:2;
26:4�, denoted in yellow) and comfort probability of these three example 
subjects. 

Using strategy 1, any setpoint within the comfort zone R*
t can be 

selected as these three subjects are all comfortable in this range. More 
specifically, the lower bound 24.2 �C is optimum in heating seasons due 
to its lower HVAC energy consumption, and vice versa for cooling sea-
sons. When using strategy 2, setpoint 25.5 �C is selected as it achieves 
the highest average comfort probability. 

For strategy 3, assuming in heating seasons, the comfort score and 
energy score at different setpoints in R*

t are calculated, which are shown 
in Table 4. Only setpoints between 24.2 �C and 25.5 �C are presented as 
setpoints higher than 25.5 �C will reduce the average comfort proba-
bility while increasing the energy use. The weighted sum (denoted as S) 
of comfort score and energy score for three example α values (i.e., α ¼

Fig. 9. Optimum Setpoint Selection Using Strategy 1 (maximize the number of 
comfortable occupants). 

Fig. 10. Optimum Setpoint Selection Using Strategy 2 (maximize the average 
comfort probability when multiple setpoints yield the same number of 
comfortable occupants). 

Fig. 11. The thermal comfort zone and probability for subjects 1, 2, and 3.  1 The x-axis is reversed to represent the decreasing room temperature. 
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0.3, 0.5, and 0.7) are presented in Table 5. The results suggest that 24.2 
�C, 24.2 �C and 24.7 �C are the optimum setpoints when the weight α 
equals 0.3, 0.5 and 0.7, respectively. 

6. Discussion 

In Section 4, personal comfort models and physiological predictive 
models are developed using multinomial logistic regression and linear 
mixed model, respectively. However, as explained earlier, the main 
contribution of this paper is the HEAT framework that consists of per-
sonal thermal comfort sensing and optimization to address the limita-
tions in physiological sensing-based HVAC control methods. These two 
models, which form a subject’s thermal profile, can be substituted by 
other modeling approaches. For example, personal comfort models can 
also be developed using multinomial mixed-effects logistic regression or 
Random Forest. 

Section 5 demonstrates the optimum setpoint selection using three 
different strategies considering occupants’ thermal comfort and HVAC 
energy consumption. Specifically, optimum setpoints in strategies 2 and 
3 come from the candidate range R*

t determined by strategy 1. In other 
words, optimum setpoints in all strategies will always be selected on the 
premise that most of the subjects will feel comfortable. However, if the 
domain of strategy 2 is the full operational range of 22 �C–28 �C instead 
of the narrowed range R*

t , setpoints associated with the highest average 
comfort probability may not yield the largest possible number of 
comfortable occupants. This scenario is illustrated in Fig. 12 where two 
subjects share the same environment. The overlap of two subjects’ 
comfort zones, i.e., the common comfort zone (denoted in yellow), 
represents R*

t . The result shows that setpoints corresponding to the 
highest average comfort probability, in these two scenarios, are outside 
of R*

t . In this case, subject 4 no longer feels comfortable even though the 
average comfort probability is maximized. 

The optimum setpoints can be updated based on the presence of 
subjects. For example, as shown in Fig. 13, the optimum setpoint for 
subjects 1 and 2 is 24.9 �C. If subject 3 joins, the setpoint should increase 
to 25.5 �C to accommodate the newcomer’s preference for warm envi-
ronments without reducing the overall comfort. This approach has 

implications in shared environments, such as conference rooms and 
offices where an optimum setpoint can be found given different com-
binations of thermal profiles (i.e., personal comfort models and physi-
ological predictive models). For occupants who are outside of the 
common comfort zones, adaptive behaviors (e.g., putting on a jacket) or 
personal devices (e.g., portable heater) can be adopted to restore per-
sonal comfort without affecting others. Thermal profiles developed in 
this paper can also be carried by occupants as they move around places. 
For example, thermal profiles saved in smartphones can be retrieved 
when occupants scan a QR code upon entering a room or connecting to a 
nearby Wifi router [14]. Motion sensors or thermal cameras can also 
determine the presence of occupants if they have dedicated working 
areas [26]. For new occupants who do not have pre-trained thermal 
profiles, template profiles or profiles of similar occupants (e.g., occu-
pants with similar age and weight) can be used as a starting point and 
updated using personal data [8,40]. Specifically, Daum et al. [8] showed 
that template comfort models can converge to over 70% of actual per-
sonal models with twenty thermal votes. 

As subjects’ skin temperature has different sensitivities in heating 
and cooling scenarios, thermal comfort zones and comfort probabilities 
can be slightly different when the room is preset at a low temperature 
versus a high temperature, assuming subjects achieved the steady-state 
conditions in both cases. This scenario is demonstrated in Fig. 14 and 
Fig. 15, which show the differences in thermal comfort zones and 
probabilities when room temperature starts from the high or low base-
line setpoints, especially for subjects 1 and 4 whose comfort zones and 
probabilities can shift by over 1 �C. These differences are mainly caused 
by the psychological perception in which the reference temperature that 
people compare with has changed in the transient environment. Sub-
jects’ evaluation of thermal sensation is relative to their initial thermal 
states at the high or low setpoints instead of the absolute room 
temperature. 

It is worth noting that this paper is not meant to suggest a specific 
setpoint for buildings like industry standards as the optimum setpoints 
can be different for other human subjects, built environments and HVAC 
systems, seasons, locations, etc. However, the proposed HEAT frame-
work can be adopted by researchers and HVAC engineers to develop 
their own thermal profiles and determine the optimum setpoint in 
different research settings. 

Three limitations of this study should be acknowledged. First, when 
modeling personal comfort, the environmental parameter includes only 
air temperature as it is directly controlled by HVAC systems. However, 
other factors, such as radiant temperature and air velocity, can also be 
measured and applied in the comfort sensing and control loop. Second, 
in the experiment, the skin temperature data are collected from seden-
tary subjects who have a low workload level. As a result, the physio-
logical predictive model may not be valid when extrapolated to subjects 
in high workload or metabolic rate situations. In future studies, if sub-
jects’ skin temperature data at different workload conditions are 
collected following similar methods explained in this study, the pro-
posed approach can not only select the optimum setpoint for a given 
group of people, but also dynamically determine the setpoint over time 
according to subjects’ workload. Third, strategy 3 needs further in-
vestigations in shoulder seasons as cooling and heating can have 
different energy consumption, which affects the energy score. 

Table 4 
The comfort score and energy score at different setpoints for a multi-occupancy 
environment with subjects 1, 2, and 3.  

R*
t  24.2 24.3 24.4 24.5 24.6 24.7 24.8 

P

i
ProbiðR*

t Þ= n  0.51 0.52 0.53 0.54 0.55 0.56 0.56 

Comfort_score (1) 0.88 0.90 0.92 0.93 0.94 0.96 0.97 
Rbase � R*

t  � 2.2 � 2.3 � 2.4 � 2.5 � 2.6 � 2.7 � 2.8 

Energy score (2)  0.37 0.38 0.40 0.42 0.43 0.45 0.47 

R*
t  24.9 25.0 25.1 25.2 25.3 25.4 25.5 

P

i
ProbiðR*

t Þ= n  0.57 0.57 0.57 0.58 0.58 0.58 0.58 

Comfort score (1)  0.98 0.98 0.98 0.99 0.99 1.00 1.00 

Rbase � R*
t  � 2.9 � 3 � 3.1 � 3.2 � 3.3 � 3.4 � 3.5 

Energy score (2)  0.48 0.50 0.52 0.53 0.55 0.57 0.58 

Note: The scores are rounded to two decimal places. 

Table 5 
Optimum setpoint selection using strategy 3 for a multi-occupancy environment with subjects 1, 2, and 3 (for α ¼ 0.3, 0.5, and 0.7).  

R*
t  24.2 24.3 24.4 24.5 24.6 24.7 24.8 24.9 25.0 25.1 25.2 25.3 25.4 25.5 

S ðα ¼ 0:3Þ .01 .00 .00 -.01 -.02 -.03 -.04 -.04 -.06 -.07 -.08 -.09 -.10 -.11 

S ðα ¼ 0:5Þ .26 .26 .26 .26 .25 .26 .25 .25 .24 .23 .23 .22 .22 .21 

S ðα ¼ 0:7Þ .51 .52 .52 .53 .53 .54 .54 .54 .54 .53 .53 .53 .53 .53 

Note: The bold number is the highest weighted score for each α value, the corresponding R*
t is the optimum setpoint. 
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Our future study will validate the comfort and energy implications of 
the proposed framework on the operation of an HVAC system inside the 
built environment and improve control strategies using field data. Such 
evaluation studies will look at the impact of climate zone control, 
response time of HVAC systems, and effect of seasonal changes (heating 
versus cooling). We will capitalize on the research insights and knowl-
edge obtained from Li et al. [14] where a smartphone app-based comfort 
optimization framework was developed and deployed in a real office 
environment. The HVAC system was controlled by a smart thermostat 
through cloud application programming interface (API) and group 
thermal satisfaction was evaluated through simulation. In Li et al. [15] 
and Li et al. [23]; the challenges associated with the installation of a 

single thermal camera and multiple camera networks (e.g., viewing 
distances, angles, and measurement accuracy) in the built environment 
were discussed, respectively. 

7. Conclusions 

This paper proposes the Human Embodied Autonomous Thermostat 
(HEAT) framework which leverages human occupants as an embodi-
ment of smart and connected thermostats to optimize occupancy- 
focused HVAC operations for improved overall thermal satisfaction 
and reduced energy use while maintaining comfort in multi-occupancy 
spaces. The proposed framework consists of a sensing step which 

Fig. 12. The Comfort Zone and Probability for a Shared Room with Two Example Subjects (left: subjects 4 and 10; right: subjects 3 and 4).  

Fig. 13. The Comfort Zone and Probability for a Shared Room When a New Subject Joins (left: subjects 1 and 2; right: subject 3 joins).  

Fig. 14. Optimum Setpoint Selection Using Strategy 1 When Room Temperature Starts from the Baseline (left: start from a high setpoint; right: start from a 
low setpoint). 
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predicts occupants’ thermal comfort using human physiological data, 
and an optimization step which determines the optimum setpoint for a 
multi-occupancy environment considering comfort and energy use. To 
this end, the proposed framework integrates personal comfort models 
and physiological predictive models to evaluate each occupant’s ther-
mal comfort at different setpoints. Thermal comfort in this paper can be 
represented in two forms, i.e., thermal comfort zone and comfort 
probability. Based on these two metrics, three HVAC control strategies, 
which leverage (1) thermal comfort zone; (2) thermal comfort zone and 
probability, and (3) thermal comfort zone, probability, and energy use, 
are compared to demonstrate the setpoint selection for a group of 
occupants. 

This paper provides insights into proactively determining the opti-
mum setpoint in physiological sensing-based HVAC control and has the 
merits of reducing discomfort time and oscillation of setpoints. After the 
initial setpoint optimization using the proposed framework, if physio-
logical sensing or thermal votes from occupants indicate that further 
setpoint adjustments are needed, the setpoint can be updated following 
the human-in-the-loop schema introduced in Section 2.2 to fine-tune the 
thermal environment. The proposed HEAT framework that couples the 
physiological sensing and setpoint optimization can serve as a basis for 
automated environment control to improve human experience, well- 
being, and building energy efficiency. 
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