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Abstract— In this paper, we propose a respiration monitoring 

system based on the channel state information received from a 
commercial off-the-shelf Wi-Fi device. We develop data 
processing modules for extracting respiration parameters from 
the Wi-Fi signal and estimate the relative tidal volume. In order to 
verify the performance of the proposed monitoring system, we use 
a human patient simulator and also test one real human subject in 
various experimental settings. With the human patient simulator, 
we evaluate the monitoring performance at various tidal volume 
levels and compare our monitoring results with the simulator 
settings. In testing with a human subject, we test our approach on 
different sleep postures and positions, Wi-Fi router’s positions, 
and monitoring environments and compare our performance with 
the spirometer measurement. The results with both the human 
patient simulator and real human subject demonstrate the strong 
and robust estimation performance of the proposed approach in 
various monitoring conditions, indicating the high promise for 
non-intrusive respiration monitoring in practice. 
 

Index Terms— vital signs, channel state information, non-
intrusive monitoring, remote sensing, respiratory rate 

I. INTRODUCTION 
ECENTLY ubiquitous health monitoring systems have 
gained increasing attention. Unobtrusive, non-invasive, 

and long-term health monitoring systems have practical 
potential to improve individual’s health status or quality of life. 
Such systems aim to collect health information from patients 
and detect abnormalities over long-term periods in a variety of 
environments. Among various health metrics, the tidal volume 
(VT), which is the main focus of this study, and respiratory rate 
(RR) can capture a person’s basic physiologic functions and 
provide essential features to help determine the person’s 
physical health condition and detect serious problems before 
they occur. 

In particular, maintaining an appropriate respiration pattern 
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during sleep is an important factor for human health. Abnormal 
respiration patterns during sleep, e.g., due to apnea, may affect 
activities of daily life, and can even cause serious illness or 
death. However, respiratory patterns are hard to measure at 
home without special devices. In general, people do not want to 
wear devices while sleeping. Devices attached on their body, 
e.g., face or chest, can be perceived as uncomfortable or 
claustrophobic. Moreover, some devices attached around the 
chest such as wearable sensors restrict postures during sleep. 
Therefore, an automatic respiration monitoring system with an 
unobtrusive and non-invasive device is useful and needed for 
detecting respiratory disorders during sleep. In addition to 
helping to diagnose a sleep disorder, long-term VT and RR 
monitoring can also be used to capture significant features of 
other respiratory disorders and to facilitate treatment of medical 
conditions, such as pneumothorax, pulmonary edema, and 
chronic obstructive pulmonary disease [1]. 

Several techniques have been proposed for long-term VT or 
RR monitoring using different types of sensors, including 
camera [2, 3], Doppler radar [4], sound sensors [5], laser [6], 
infrared imaging sensor [7], high-resolution accelerometers [8, 
9], and depth camera [10, 11, 12, 13]. Many of these techniques 
require direct patient contact. For example, Fekr et al. [14] 
proposed to measure RR and VT with a wearable accelerometer 
sensor attached to the body. However, such devices cause 
inconvenience to patients and thus prevent long-term 
monitoring. Some studies use non-contact devices including 
microphones and vision-based cameras. Although these devices 
are less obtrusive, they can invoke privacy concerns [1, 5, 15]. 
Recently, non-invasive respiration monitoring systems based 
on radio frequency (RF) devices have drawn attention due to 
their comfortable sensing environment. The received signal 
strength (RSS) is the most popular approach among RF 
technologies. However, the measurements from the RSS 
devices are sensitive to environment conditions and noises, and 
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thus, they have limitations in capturing abnormal respiration 
patterns in practice. Recently, Liu et al. [16] proposed channel 
state information (CSI)-based respiration monitoring system 
with the Wi-Fi devices and showed that their monitoring system 
could overcome the aforementioned limitations of other 
devices. Their study, however, has been limited to monitor RR 
only, and monitoring VT was not considered. 

There are several challenges to estimate VT. First, there are 
multiple CSI subcarriers containing different quality of 
respiration information. In other words, some subcarriers 
provide more informative respiration data, whereas others 
provide less informative ones. Therefore, selecting an 
informative CSI subcarrier is critical for the quality of VT. 
Second, there is no ground-truth VT for comparison with the 
estimated VT from the Wi-Fi device, so it is hard to measure 
the similarity between measured and estimated VT.  Third, the 
amplitudes of CSI signals depend on the selected subcarrier. 
Consider 30 subcarriers, each with 3 antennas of the receiver 
(RX). Among the 90 subcarrier/antenna combination (3 
antennas of the RX and 1 antenna of the transmitter (TX)), the 
optimal subcarrier/antenna selected by the developed subcarrier 
selection module varies, depending on experimental 
environments such as positions, postures and subjects. Thus, it 
is difficult to calibrate the Wi-Fi monitoring for VT estimation 
as a sensor.   

To address these issues, we propose a new respiration 
monitoring system to estimate the relative VT based on the 
initial amplitudes of the CSI signals in the commercial off-the-
shelf Wi-Fi devices. The monitoring system includes the 
hardware device, data processing modules, and relative VT 
estimation algorithms. Specifically, we develop a data 
processing algorithm to extract relevant parameters from the 
Wi-Fi signal for estimating VT. We also propose a new 
algorithm to choose the best CSI for monitoring. 

We evaluate the performance of our approach in various 
monitoring conditions. First, we use a human patient simulator 
(HPS) at different levels of VT setting. In the HPS, we vary the 
VT from 600 mL to 100 mL in decrements of 100 mL every 1 
minute. Our estimation results show good agreement with the 
HPS setting. Next, to verify the practicability of the approach, 
we perform experiments with a real human subject in different 
sleep postures and positions, Wi-Fi router positions, and 
monitoring environments. In each case, the human subject 
varies the VT from 1000 mL to 250 mL in decrements of 250 
mL every 1 minute and we measure the VT using a spirometer. 
Our monitoring results from both experiments (one with HPS 
and the other with the real human subject) indicate the strong 
performance of the proposed approach in monitoring VT. 
Specifically, the correlation coefficient of the relative VT 
between our estimations and the HPS settings is 0.99. In the real 
human subject test, the correlation coefficients of relative VT 
between our estimated and the actual VTs are between 0.93 and 
0.99. The results demonstrate the robust performance of the 
proposed approach in monitoring the relative VT. Moreover, 
experimental results suggest that our approach can successfully 
monitor RR as well. 

To the best of our knowledge, this paper is the first study to 
monitor the relative VT using the CSI of Wi-Fi signals. 

Recently some studies estimate RR using the Wi-Fi signals [16, 
17] (to be detailed in Section II). However, no methods have 
been proposed to extract the VT information from the Wi-Fi 
signal. Wi-Fi devices are common in our daily life and do not 
need to be attached to the body. Consequently, our proposed 
approach has practical implications for non-invasive health 
monitoring. The attained results suggest high promise for non-
intrusive respiration monitoring and timely detection of 
respiration problems. 

Section II reviews related studies. Section III describes the 
proposed approach to estimate VT from the HPS and human 
subject using the CSI. Section IV presents our experimental set-
up using the HPS and human subject with the commercially 
available Wi-Fi device. Section V describes the experiments 
and reports the evaluation results. Section VI discusses the used 
parameter for VT estimation. Section VII concludes this study 
and presents future research directions. 

II. CSI BACKGROUND AND RELATED WORK 

A. Technical Background of Channel State Information [18]  
The CSI can be described how wireless signals propagate from 
the TX to the RX at specific carrier frequencies and also shows 
the combined effects, such as scattering, fading and power 
decay with distance [17]. The multi-path effects, such as 
amplitude attenuation and phase shift, impact on CSI amplitude 
and phase. Each CSI entry indicates the Channel Frequency 
Response (CFR) including the amplitude attenuation factor, 
propagation delay and carrier frequency [19]. The CSI 
amplitude and phase are impacted by the adjacent environment, 
such as the physical movements of the TX, RX, objects or 
humans [18].  

The multiple subcarriers are generated from a Wi-Fi channel 
with Multiple-Input and Multiple-Output (MIMO) by using the 
orthogonal frequency-division multiplexing (OFDM). To 
measure CSI values, the Wi-Fi TX transmits Long Training 
Fields including the pre-defined symbols for each subcarrier of 
the packet preamble. The Wi-Fi channel is modeled by Gr = CGt 
+ Qv, where Gr is the received signal vector in the RX, Gt is the 
transmitted signal vector in the TX, C is the CSI matrix, and Qv 
is the noise vector, for each subcarrier. The RX checks the CSI 
matrix C using Gt and Gr after processing to remove cyclic 
prefix, demapping, and OFDM demodulation [18].  

We use the CSI tool [20] built on the commercially available 
Intel Wi-Fi Wireless Link 5300 (IWL5300) 802.11n MIMO 
radios using custom modified firmware and open-source Linux 
wireless drivers. The IWL5300 provides 802.11n CSI in a 
format that reports the channel matrices from 30 subcarrier 
groups, which is either one group for every two subcarriers at 
20 MHz or one group for every four subcarriers at 40 MHz. Each 
channel matrix entry is a complex number with the signed 8-bit 
resolution for both the real and imaginary parts and specifies 
the gain and phase of the signal path between a single 
transceiver antenna pair. 

The CSI tool records detailed measurements of the wireless 
channel along with received 802.11 packet traces. It runs on a 
commodity 802.11n network interface card and records CSI 
based on the 802.11n standard [21]. The CSI contains 
information about the channel between the TX and RX at the 
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level of individual data subcarriers. Our system uses the Intel 
Wi-Fi Link 5300 wireless network interface card with three 
antennas. In our experiment, we use Ubuntu 10.04 LTS with the 
2.6.36 kernel on a Dell Latitude E5520 Laptop with Intel core 
i5-25s0M (2.5 GHz). We install customized versions of Intel’s 
closed-source firmware, open-source iwlwifi wireless driver, 
userspace tools to enable these measurements, access point 
functionality for controlling both ends of the link, and 
MATLAB 2014 for data analysis. 

B. Related Work 
Several studies estimate respiratory parameters using different 
types of contact devices including electrocardiogram, strain 
gauge, accelerometer, pressure, piezoelectric belt, and pulse 
oximetry [14]. However, due to their inconvenience, people 
tend to prefer monitoring respiratory parameters using less 
obtrusive and non-contact type devices. Overall, the non-
contact respiration monitoring systems can be categorized into 
three main types: systems using microphones, systems using 
vision type sensors, and systems based on RF signals. 

First, monitoring systems using microphones usually locate 
microphones near patients in a quiet environment. Que et al. [5] 
propose a VT and RR estimation method using tracheal breath 
sounds. Although this method can detect deep and low pitched 
breath sounds, the sound of the airflow should exceed the 
background noise. Therefore, this monitoring method is not 
useful in noisy environments. 

Second, monitoring systems that employ vision type sensors 
can provide relatively straightforward information. Lewis et al. 
[15] use the infrared video recording of the face during a variety 
of respiratory conditions to extract breath-to-breath timing 
intervals. They track the relative VT from thermal videos of the 
nostril region. However, it performs poorly when a subject’s 
head is moved out of the infrared video angle. Transue et al. [1] 
propose a vision-based technique to monitor VT based on a 
three-dimensional (3D) chest surface reconstruction using a 
depth camera. They apply the 3D space-time volumetric 
representation in order to generate omni-directional 
deformation states of the chest size change associated with VT. 
Although this technique uses a depth-camera like Kinect, 
privacy concerns still remain. In fact, both microphone (the first 
monitoring method) and vision based sensors (the second 
monitoring method) cause potential privacy concerns to users. 

Finally, respiration monitoring systems using RF signals 
exhibit many advantages of being unobtrusive, having no light 
interruptions and fewer privacy concerns. Existing studies in 
the literature have used three RF technologies: RSS, radar type, 
and CSI from Wi-Fi device. Among the three RF technologies, 
RSS has been widely used for capturing respiration signals. 
Patwari et al. [22] and Patwari et al. [23] measure the RSS from 
a network using commercial off-the-shelf wireless transceivers. 
Abdelnasser et al. [24] propose a method to extract the 
breathing signal from a Wi-Fi RSS using a commercial off-the-
shelf device for detecting sleep apnea. Kaltiokallio et al. [25] 
use a single TX and RX pair to identify RR using RSS and 
compute RR in different lying positions. However, the RSS is 
not sensitive enough to track small chest movements reliably. 
According to De Groote et al. [26], the primary movement of 
the chest is between 3mm and 5mm. These small changes are 

easily disturbed by environmental noise and human activities. 
The RSS signals, which take integer values in a narrow range 
between -20 dB to -17 dB, cannot distinguish such small chest 
movements from noise and disturbances [27]. To address the 
low sensitivity and low resolution of RSS signals, respiration 
monitoring based on RSS measurements typically assumes a 
periodic breathing pattern and converts the original integer-
valued signals to sinusoidal signals. [17, 27]. However, such 
treatment does not capture abnormal breathing patterns, e.g., 
sleep apnea, that do not follow the periodic pattern, making the 
monitoring results less accurate. 

Adib et al. [28] use a frequency modulated continuous wave 
(FMCW) radar technique to monitor respiration and heart rate 
based on a signal sweeping from 5.46 GHz to 7.25 GHz every 
2.5 milliseconds with transmitting sub-mW power. This 
technique is also useful to detect the human breath through-
wall. Nguyen et al. [29] use a phase-motion demodulation 
algorithm to monitor breathing volume based on the fixed 
directional radio devices placed above the subject. These Vital-
Radio technique and directional radio are, however, of low 
practical utility [17], because they require expensive hardware. 

Wi-Fi devices have great potential to be a practical solution 
for tracking individuals’ breathing patterns in smart homes or 
clinical settings. Unlike RSS, Liu et al. [16] use the CSI from 
the Wi-Fi devices to monitor respiration to detect suppressing 
breath. They apply the CSI system in a home environment to 
monitor RR. However, their study [16] as well as the studies by 
Liu et al. [17], Wang et al. [30], and Liu et al. [27] track the RR 
with simple and artificial sleep apnea events and do not monitor 
the VT. Table 1 summarizes the previous methods to monitor 
and estimate the respiratory parameters in an unobtrusive way 
and compares them to our proposed monitoring system.  

We would like to highlight the novelty of our study, 

TABLE I 

COMPARISON OF PREVIOUS STUDIES USING UNOBTRUSIVE MONITORING 
METHODS WITH THE PROPOSED MONITORING METHOD   

Reference Device type Privacy 
Concern 

Monitoring 
Respiration 

Rate 

Monitoring 
Tidal 

Volume 
Proposed 

monitoring system CSI No Yes Yes 

Que et al. [5] Microphone Yes No Yes 

Transue et al. [1] Vision 
(Depth camera) Yes Yes Yes 

Lewis et al. [15] Vision 
(Infrared video) Yes Yes Yes 

Patwari et al. [22] RF signal  
(RSS) No Yes No 

Patwari et al. [23] RF signal  
(RSS) No Yes No 

Abdelnasser et al. 
[24] 

RF signal  
(RSS) No Yes No 

Kaltiokallio et al. 
[25] 

RF signal  
(RSS) No Yes No 

Adib et al. [28] RF signal 
(FMCW) No Yes No 

Nguyen et al. [29] 
RF signal 

(Directional 
radio) 

No No Yes 

Wang et al. [30] RF signal  
(CSI) No Yes No 

Liu et al. [16] RF signal  
(CSI) No Yes No 

Lie et al. [17] RF signal  
(CSI) No Yes No 

Liu et al. [27] RF signal  
(CSI) No Yes No 
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compared with existing methods. Unlike previous studies that 
estimate RR only using the CSI in the Wi-Fi signal [16, 17], our 
approach can estimate both VT and RR, extracting richer 
information from the signal. Compared with the RSS 
monitoring method, CSI represents fine-grained physical layer 
information which has much higher sensitivity and resolution 
than RSS [17], enabling us to capture small chest movements, 
e.g., less than 5 mm which corresponds to VT of about 600 mL 
(see Section V) [26] and to track both normal and abnormal 
breathing (see Section VI).  

III. WI-FI MONITORING SYSTEM 
The proposed approach can estimate both VT and RR using the 
CSI in commercial off-the-shelf Wi-Fi signals. Because the 
focus of this study is to estimate VT, this section discusses the 
VT estimation method, while the method for estimating RR and 
implementation details are summarized in Appendix A.  

A. Overview of monitoring procedure 
The main idea of our approach is to extract the relative VT from 
the chest movement. Fig. 1 summarizes the overall procedure. 
The monitoring system captures time-series of CSI amplitude 
measurements collected by the Wi-Fi device with three 
antennas using system-generated 156 Hz traffic (sampling rate). 
It includes 30 subcarriers, each with 3 antennas collecting 
measurements in 156 Hz. As such, the input becomes 30-by-3 
matrix called as CFR matrix collected in 156 Hz, as shown in 
Fig. 1. The captured raw CFR signals are preprocessed to get 
clear signals and obtain the frequency domain information for 
selecting the best subcarrier.  

After preprocessing, the Subcarrier Selection module is 
applied to select the best CSI data among the 90 
subcarrier/antenna using 90 Power Spectrum Densities (PSDs) 
as a frequency domain (see Section III.D.). After selecting the 
best subcarrier, the Peak and Valley Detection as a time domain 
finds the local maxima and minima of the signal using the 
MATLAB ‘findpeaks’ function with the minimum peak width 
of 1.15 seconds. The Fake Peak/Valley Filtering module 
removes the outliers from the extracted peaks and valleys (see 
Appendix D). Finally, the Parameter Estimation extracts the 
features regarding the filtered peaks and valleys for RR / 
Relative VT Estimation. 

B. CSI Collection [17] 
The monitoring system, including the RX with three antennas 
and the TX with one antenna, captures 156 packets per second 
as shown in Fig 1. Each packet includes 30-by-3 (CFR) matrix. 
Each column and row of the CFR matrix indicates one antenna 
and one subcarrier, respectively. The CFR with the ith column 
of the matrix extracted from the jth packet received can be 
written as 

𝐶𝐹𝑅$(𝑗) = )𝐹*$(𝑗), 𝐹,$(𝑗),…𝐹./$ (𝑗)0
1
																		(1) 

 

where 𝐹4$(𝑗) is the CFR on the kth subcarrier at time instant j of 
antenna i. The 𝐹4$(𝑗) is a complex number and is represented by 
the amplitude 5𝐹4$5 and the phase 𝛿𝐹4$  as 𝐹4$ = 5𝐹4$5 ∗ 𝑒9:;

<
. In 

order to process the time-series information of 𝐶𝐹𝑅$(𝑗), the 

𝐶𝐹𝑅$ includes 30-by-n is calculated by: 
 

𝐶𝐹𝑅$ = [𝐶𝐹𝑅$(1), 𝐶𝐹𝑅$(2),…𝐶𝐹𝑅$(𝑛)]																		(2) 
 
where n is the number of packets received at antenna i. Each 
row of 𝐶𝐹𝑅$  indicates the temporal change of the CSI 
information over one subcarrier so that we use the amplitudes 
of 𝐶𝐹𝑅$ for the input of the preprocessing.    

C. Preprocessing 
The preprocessing procedure consists of eight steps (in Fig. 1) 
to extract the PSDs in frequency domain for selecting the best 
subcarrier and extract clean time-series signal for estimating 
relative VT. 
(a) Signal smoothing: A moving average filter is used for 
signal smoothing to filter out the initial high frequency. We use 
𝑀BC order moving average filter that sequentially takes average 
values of last 𝑚  data, 𝐶𝐹𝑅$(𝑡) , 𝐶𝐹𝑅$(𝑡 − 1) , ⋯ , 𝐶𝐹𝑅$(𝑡 −
𝑚 + 1), so that the filtered data at time 𝑡, 𝑌B$, can be estimated 
by  

																															𝑌B$ =
*
J
∑ 𝐶𝐹𝑅$(𝑡 − 𝑙)JM*
NO/ . (2) 

 
(b) Resampling: We uniformly resample the smoothed signal 
from 159 Hz (𝒀*QRST$ ) to 39 Hz (𝒀.RST$ ) for reducing the 
computation. 
(c) Outlier removal: A typical Wi-Fi signal includes outliers 
such as a deep valley that significantly deviates from the normal 
pattern. If we blindly apply common filtering methods without 
removing outliers, the resulting amplitude becomes inaccurate. 
We identify such outliers based on the empirical distribution of 

 
Fig. 1. Overall procedure to estimate the relative VT and RR.  
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the Wi-Fi measurements and remove the outliers with the 
sudden Wi-Fi signal amplitude graph’s angle changes. 

Specifically, let di denote the differential value of Wi-Fi 
signal, 𝒀.R	ST$ , and W denote the number of measurements. We 
obtain the sample mean,	�̅�, and the sample standard deviation, 
s, as   

�̅� = *
W
∑ 𝑑$W
$O* ,                                    (3) 

 

𝑠 = Y *
WM*

∑ Z𝑑$ − �̅�[
,W

$O* 	.                            (4) 
 

Then, we set the threshold value as 𝑑] + 3𝑠 , so that di is 
marked as an outlier when |di| exceeds this threshold, i.e., 
 

|𝑑$| > �̅� + 3𝑠.                                    (5) 
 

With this threshold, about 0.3% of data is identified as 
outliers when the differentials are normally distributed. Even 
for non-normal distributions, this threshold can be practically 
applied for removing outliers [31] and the removed signal is 
represented as Ri. The detailed pseudo code of the outlier 
removal algorithm is shown in Algorithm 1. 

Then, we employ commonly used filtering techniques:  
(d) Mean value subtraction:  
																																		𝑍B$ = 𝑅B$ − 𝑅Bbccc, (6) 
 

where 𝑅Bbccc is the average value of 𝑅B$ at ith antenna. 
(f) Moving average: 5th order moving average to reduce high-

frequency noise. 
(g) High pass filter:  High pass filter (with 0.01 Hz cut-off 
frequency) to prevent a drift suppression. 
(h) Low-pass filter: Low-pass filter (with 0.6 Hz cut-off 
frequency) to suppress the high-frequency information even 
more. 𝐹B$ is the filtered value using (f, g, h) from 𝑍B$. We use the 
‘filtfilt’ function for high/low-pass filter in the MATLAB.  
(i) Fast Fourier Transform: We use Fast Fourier Transform 
(FFT) to convert the preprocessed time-series signal, 𝐹B$, to the 
frequency domain to generate features for selecting the best-
effort signal quality. We use the ‘fft’ functions for FFT, 
respectively in MATLAB. 

Fig. 2 shows the preprocessing effects including signal 
smoothing, resampling, outlier remover, mean value 
subtraction, and filtering processes (moving average, high/low 
pass filters) to filter out various noises or artifacts. As can be 
seen, the preprocessing improves the signal quality for 
respiration monitoring.  

Fig. 2. Preprocessing effects 

D. Subcarrier Selection 
Among the 90 CSI data available in the CSI tool, some 
subcarriers provide high-quality breath signals, whereas others 
provide less useful information. Typically, breathing frequency 
from child to adult ranges 8 min-1 ~ 37 min-1, which corresponds 
to the range of RR, 0.133 Hz ~ 0.633 Hz. Fig. 3 shows the 
frequency domain power spectral density. When the subcarrier 
successfully measures human breaths, the power spectral 
density in FFT includes a high amplitude peak in the frequency 
range of 0.133 Hz ~ 0.633 Hz (see Fig. 3) (we denote this range 
as α). Moreover, when the breath information in the subcarrier 
is clearly collected, the amplitudes in other frequency ranges, 
i.e., 0.633 Hz ~ 1.047 Hz (denoted as β) are low, as shown in 
Fig. 3. 

Algorithm 1:  An algorithm for Outlier Removal 

Input: Data Array CSI_DATA 
Output: Data Array CSI_DATA_Result 
 

a. Check all angles between adjacent data points (S_Agl) and save 
    into array variable (S_Agl_Arr). 
b. S_Mean = Averaging the dt_fTh 
c. S_STDEV = square root (S2) 
d. Rms_3delta = S_STDEV * 3 
e. dt_th = S_Mean + Rms_3delta 
 

1: for CSI_DATA[i] from 2 to length(CSI_DATA) by 1 
2:  S_Agl = (CSI_DATA(i) - CSI_DATA(i - 1)); 
3:  S_Agl_Arr(i) = S_Agl; 
4:  if (S_Agl < 0) & (abs(S_Agl) > abs(dt_th))  
5:    CSI_DATA_Result(i) = dt_WiFi_P; 
6:     if flag_check_i == 0 
7:         flag_check_i = 1; 
8:     end-if 
9:     S_Agl_1 = CSI_DATA(i); 
10:  else if flag_check_i == 1 
11:         CSI_DATA_Result(i) = CSI_DATA(i) - (S_Agl_1 - S_Agl); 
12:         S_Agl_2 = CSI_DATA(i); 
13:         if (dt_WiFi >= 0) & (abs(dt_WiFi) > abs(dt_th)) 
14:             flag_check_i = 0; 
15:             CSI_DATA_Result(i) = S_Agl_2 + abs(S_Agl_1 - S_Agl); 
16:         end 
17:         else if (dt_WiFi >= 0) & (abs(dt_WiFi) > abs(dt_th)) 
18:             CSI_DATA_Result(i) = S_Agl_2 + abs(S_Agl_1 - S_Agl); 
19:         else  
20:         CSI_DATA_Result(i) = CSI_DATA(i);  
21:         dt_WiFi_P = CSI_DATA(i); 
22:         end-if 
23:      end-if 
24:  end-if 
25: end-for 
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Fig. 3. Example of power spectral density of FFT. 
 

In order to select the best subcarrier/antenna that provides 
high amplitude signals of typical breath with low artifacts, our 
subcarrier selection module captures two values: the maximum 
amplitude of α, denoted as αM, and average value of β, denoted 
as βA. Signals from a good subcarrier with clear respiration and 
minimum noise should have high amplitude peak and small 
noise. In other words, a good subcarrier results in a large αM and 
small βA. Therefore, we use the ratio of αM to βA, referred to as 
the relative breath amplitudes, R, as follows. 

 
 R = αM / βA           (7)) 

 
Then we choose the subcarrier with the largest R value.  

E. Peak/valley detection and fake peak/valley detection 
We extract all peaks and valleys in the selected respiration 
signal using the local maxima and minima approach. The 
algorithm finds all the peaks and valleys having widths of at 
least 39 samples (one second). Among the extracted data, fake 
peak/valley is filtered based on the range of breathing frequency 
(8 min-1 ~ 37 min-1). These processes provide the initial 
parameters to the parameter estimation module. 

F. Parameter estimation and relative VT Estimation 
We note that VT is related to the lung space volume of the 
human body, which is defined as the range of amplitude 
oscillation at each breath [15]. Therefore, we extract the 
amplitude (associated with lung space volume) from body 
reflection. 

The respiratory amplitude can be calculated as the difference 
between the peak value and its adjacent valley in the Wi-Fi CSI 
signal. Considering that there are two adjacent valleys for each 
peak in the signal, we subtract the average of the two adjacent 
valleys from the peak value to get each amplitude. Specifically, 
at the jth ( 𝑗 = 1, 2,⋯ , 𝐽)  time window, we obtain the kth 
amplitude, 𝑃𝑉4

h , as 

 𝑃𝑉4
h = 𝑃4

h −
i;
jki;lm

j

,
                                (8)) 

 
where 𝑃4

h  and 𝑉4
h denote the kth Z𝑘 = 1, 2,⋯ ,𝐾h[  peak and 

valley, respectively, and 𝐾h  is the number of peaks/valleys in the 
jth window. Fig. 4 shows an example of the jth windows with 
peaks (red ‘*’) and valleys (blue ‘o’) of the Wi-Fi signal 
including the kth peak and valley. The resulting 𝑃𝑉4

h  implies an 
instant amplitude at each breath. 

Even when the target VT is maintained at the same level, the 
amplitude can slightly vary breath by breath. As such, we 
average instant amplitudes to get the local VT as 

 𝑇h =
∑ qi;

jrj
;sm
tj

.                                    (9) 

 Fig. 4. Wi-Fi signal with peaks (red ‘*’) and valleys (blue ‘o’) 

In our experiments, we set the window segment at 20 
seconds length with 5 seconds sliding step. Then, we take the 
average, denoted by Eh, of multiple 𝑇h′𝑠 obtained at the same 
target VT level. Because the amplitudes of the extracted Wi-Fi 
signals vary from subcarrier to subcarrier, following the 
procedure in [14], we obtain the relative VT, 𝑉𝑇v , by 
normalizing Eh with its initial VT, E0, i.e.,  
 

 𝑉𝑇v =
wx
wy
× 100.                                  (10) 

 
Note that to the best of our knowledge this is the first study 

that tackles the challenges of relative VT estimation. We 
estimate the relative VT from CSI signals and compare it with 
the ground truth VT measured from HPS and a human subject, 
whereas the existing methods using CSI signals [16, 17, 27, 30] 
estimate the respiration rate only due to the difficulties of 
measuring the ground truth VT. 

IV. EXPERIMENTAL SETTING 
To verify our proposed approach, we conducted experiments 
using HPS and with a real human subject. Since HPS provides 
accurate and constant VT values based on the predefined 
setting, it can be used for verifying measuring accuracy. In the 
experiments with a human subject, we employ diverse 
measuring environments, such as sleep postures or positions, 
for checking practical usability. This section explains our 
experimental setting and procedure in detail.  

A. System Setting for Human Patient Simulator (HPS) 
HPS is an electronic mannequin-type physical simulator that 
can simulate inhalation and exhalation functions with actual 
chest movements (Fig. 5(a)). It is designed for simulating 
anesthesia and respiratory functions with respiratory modeling 
and lung mechanics [32]. The size of the HPS mannequin used 
in our experiment is 180 cm in height and weighs 34 kg, and the 
outer material is latex. Fig. 5 shows the experimental setting 
using a Linux laptop with the Intel 5300 NIC board and open-
case three antennas, HPS mannequin, and Wi-Fi router with one 
antenna. 

 

 

 

 
 

(a) HPS test environment 
       

 (b) Schematic of test environment 
 

Fig. 5. Overview of experiment setup  
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Using HPS, we can manually set the target VT value. Ideally, 
the target value should match with the actual value of the 
mannequin. In reality, the actual VT in HPS can be slightly 
different from their set values (i.e., the target VT). After the 
target value is set, the HPS physiological model tunes the actual 
value toward the target value. In this process, the actual value 
can slightly deviate from the target value for a steady state and 
the HPS automatically adjusts its chest excursions to produce 
the VT close to its set value.  

In general, an actual VT can be measured by using a Wright 
spirometer connected to either an endotracheal tube or with a 
tight mouth seal. However, the physical structure of the 
mannequin precluded use of a tightly sealed Wright spirometer. 
Therefore, when we evaluate the VT estimation accuracy, we 
use the set value as ground truth VT value. 

Recently the research of the Fresnel zone model, which 
determines the quality of extracted Wi-Fi signals based on the 
series of concentric ellipsoids of alternating strength, was 
performed to find the right environmental setting [30, 33]. Their 
researches suggest that the closer a subject is to the line between 
TX and RX devices, called the line-of-sight (LOS), the clearer 
periodic patterns can be obtained, and when a subject is 2 
meters away from the LOS, respirations cannot be detected. 
Additionally, the LOS distance should not be larger than 3 
meters. We select the environmental setting according to the 
conditions suggested in [30, 33]. 

Fig. 6 illustrates the detailed configuration including the 
distances between devices and HPS. We set the TX (Wi-Fi 
router antenna) and RX (three antennas of the Linux laptop) 190 
cm apart, and place the center of the HPS mannequin 80 cm 
from the RX antenna and 50 cm from the head to the centerline 
(the line between RX antenna 2 and TX antenna). The distances 
between mannequin’s chest and floor and between the antennas 
and floor are 104 cm and 105 cm, respectively. 

 
  

(a) top view (b) side view 
Fig. 6. HPS and Wi-Fi system setting configuration 

B. System Setting for Human Subject Test 
To validate our proposed method’s practicability, we also 
conduct experiments with a real human subject in various 
measuring environments, including different sleep postures, 
sleep positions, Wi-Fi routers’ positions, and room size. The 
human subject is 174 cm tall and reclined on a bed, trying to 
breathe with VT from 1000 mL to 250 mL in decrements of 250 
mL every 1 minute using a spirometer to measure and maintain 
the target VT level every minute. We also measure actual VT 
values using the spirometer. 

We consider several experimental settings as shown in Fig. 
7. Fig. 7(a) shows four different sleep postures including 
starfish, log (or lateral decubitus), soldier (or supine), and fetal. 
Fetal is the sleep position curled-up lying on one side. Log is 

the sleep position lying on side with both arms down and 
keeping the spine straight. Soldier is the sleep position lying on 
back with arms down close to body, and starfish is the sleep 
position lying on back with both arms up near sleeper’s head. 
Fig. 7(b) depicts three sleep positions (O1: left, O2: middle, O3: 
right) in the bed. Fig. 7(c) illustrates the detailed configuration 
including different locations of RX that are marked as circled 
numbers 0, 1, and 2 (T0, T1, and T2 respectively). Heights of 
bed, RX (ANTs), and TX are 53 cm, 83 cm, and 65 cm, 
respectively. The distance between RX (ANTs) and T1 is 168 
cm and T0 is located in the same distance away from the RX 
(ANTs) horizontally and 10 cm away from the top of the bed 
vertically. T2 is located 212 cm away from the top of the bed 
vertically and 84 cm away from the RX (ANTs) horizontally. 
Fig. 7(d) represents the details of the room structure. The 
experiments with the combinations of these setting are 
separately conducted in both living room and bedroom. 

 

  
(a) Sleep postures 

 
(b) Sleep positions  

 

  
 

(c) Wi-Fi system setting configuration 
(Unit: cm) 

 (d) Floor plan 

Fig. 7. Human subject test factors 

V. EXPERIMENTAL RESULTS 
This section presents the results of the proposed approach from 
our experiments with the HPS system and real human subject. 

A. Relative VT Estimation in HPS 
To evaluate the estimation accuracy of the proposed approach 
at different VT levels, we change the target level of VT every 
minute. Specifically, we set the VT of HPS sequentially at 600 
mL, 500 mL, 400 mL, 300 mL, 200 mL and 100 mL. Fig. 8 
depicts the processed time-series signals of Wi-Fi along with 
VT settings in the HPS (see the number above the arrow). We 
can see that the amplitudes and intervals of the Wi-Fi signal 
successfully reflect the VT changes. 

To evaluate the estimation performances of the method, Fig. 
8 provides the comparison between the estimated VTs (i.e., 𝑉𝑇v 
in (7)) and VT set values at different levels. 

Bed

0

1

2

RX
(Ants) 168

65
83

89

212

10

Height

Distance

65

65

53
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Fig. 8.  Experimental result of the processed Wi-Fi signal at different levels 
of VT (note: each number above the arrow indicates the VT setting on HPS 
system). 
 

To evaluate the impact of the FFT time window on the 
estimation performance, we compare the six relative VT values 
between Wi-Fi measurements and HPS settings. Table II 
summarizes the correlation coefficients with different FFT time 
windows of the HPS test, demonstrating that the estimation 
performance is not sensitive to the FFT window size. 

TABLE II  
Relative VT estimation performance with different FFT window sizes using 

HPS 
FFT Window Size 60s 120s 180s 360s 

Correlation 0.98 0.99 0.97 0.99 
 

In general, the estimated results are close to the HPS set 
values, demonstrating the strong estimation performance of our 
approach. The correlation coefficient between the HPS settings 
and the estimated VTs using Wi-Fi is 0.99. These results 
indicated that our method which uses the amplitude information 
from the Wi-Fi signal captures the lung volume of the human 
body well, which leads to accurate VT estimation. 
 

Fig. 9. Comparison between the estimated relative VTs based on Wi-Fi signal 
(left, blue-solid column) and the actual relative VT in HPS setting (right, red-
dashed column). 
 

We observe in Fig. 9 a slight mismatch between our 
estimations and the set value, especially when the VT is set at 
200 mL in the HPS. As we discussed earlier, the actual VT of 
the mannequin in the HPS system can be different from the set 
value. Therefore, our estimation mismatch might be partially 
due to the discrepancy between the actual VT and set value. 
Another reason might be due to the material of HPS. The outer 
covering of the HPS used in this study is latex, which is 
different from human skin. Wilson [34] reports the reflection 
and transmission losses through different materials, concluding 
that the transmitted and reflected energy of the Wi-Fi signal can 
be affected by different materials. Specifically, the human body 
consists of about 60% water for men and about 50% for women 
[35], which is different from the latex shell of the HPS. Liu et 

al. [16] also report fake peaks which are the identified peaks in 
the different locations of actual peaks of the sinusoidal CSI 
amplitude pattern on the human body. The latex material 
possibly makes this issue worse. Despite the slight mismatch at 
the set value of 200 mL, considering that the normal VT is 5 to 
7 mL per kg of ideal human body weight, 200 mL of VT is 
generally observed from people with the weight of 30 to 40 kg, 
which is small for adults. Therefore, our method would still be 
clinically useful for estimating VTs for adults.  

B. Relative VT Estimation with a Real Human Subject  
We additionally evaluate the accuracy of the relative VT from 
the experiments with a human subject in a real environment. We 
conduct experiments with different sleep postures, sleep 
positions, Wi-Fi router’s positions, and rooms. 

Fig. 10 shows the sample resulting signal graph in the setting 
(soldier sleep posture, O2 sleep position, T1 router position, and 
Bedroom). At each experiment, the human subjects changed the 
target level of VT every minute, sequentially 1000 mL, 750 mL, 
500 mL, and 250 mL. Although the human subject tried to 
maintain the constant VT at each minute, there were small 
variations in the actual VT. As such, direct comparisons 
between the estimated values with the target levels would be 
less meaningful, different from the experiment with HPS where 
we can control actual VT levels. Instead, we take the mean 
spirometer measurements during 1 minute and use this mean 
value as ground truth. The upper arrow in each graph denotes 
the 1-minute mean spirometer VT measurement. 

Fig. 10.  The resulting signal graph in the human subject test with conditions, 
such as Soldier sleep posture, O2 sleep position, T1 router position and 
Bedroom. 
 

Then, to measure the estimation accuracy, we obtain the 
correlation coefficients between the estimated values and the 
spirometer average measurements. Table III summarizes the 
correlation coefficients obtained from experiments in different 
settings. The best result is obtained at the combination of 
starfish, O2, T1, and bedroom with correlation coefficient close 
to 1. In the sleep posture, starfish performs the best, but the 
other three sleep postures also achieve high correlation 
coefficients. Regarding the sleep position, O2 is slightly better 
than O1 and O3. In addition, our experiment performed in the 
bedroom shows a better result than that in the living room. For 
the Wi-Fi router position, T1 generally performs better than 
other positions. Overall our analysis suggests that our 
estimation performance is consistently strong and robust to a 
variety of sleeping and environmental factors.  
 The reason that the correlation coefficients in the human 
subject experiments are slightly lower than those in the HPS 
experiments is that the human subject could not keep the VT at 
a constant level over each minute. For example, during the 
experiment, unexpected outlier breaths occurred easily. 
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However, the results show the potential of our approach to 
monitor VT in real living environments. 
 

TABLE III 
THE RESULT OF THE REAL HUMAN SUBJECT TEST IN DIFFERENT ENVIRONMENTS   

Sleep 
Posture 

Sleep 
Position 

Wi-Fi 
Router 

Position 
Room Correlation 

Coefficient 

Soldier O2 T1 Bedroom 0.97 
Fetus O2 T1 Bedroom 0.99 

Starfish O2 T1 Bedroom 1.00 
Log O2 T1 Bedroom 0.99 

Soldier O1 T1 Bedroom 0.97 
Soldier O2 T1 Bedroom 0.99 
Soldier O3 T1 Bedroom 0.97 
Soldier O2 T0 Bedroom 0.94 
Soldier O2 T1 Bedroom 0.97 
Soldier O2 T2 Bedroom 0.99 
Soldier O2 T1 Living Room 0.93 
Soldier O2 T1 Bedroom 0.97 

 

We compare the four relative VT values of the human subject 
(1000 ~ 250 mL) between Wi-Fi measurements and diverse 
settings. Table IV summarizes the correlation with different 
FFT time windows of the human subject tests. The estimation 
performance is comparable, except one case with the FFT 
window size of 60 seconds. 
 

TABLE IV  
RELATIVE VT ESTIMATION PERFORMANCE WITH DIFFERENT FFT WINDOW 

SIZES WITH HUMAN SUBJECT 
FFT Window Size 60s 120s 180s 360s 

Correlation 0.8 0.95 0.91 0.99 

VI. DISCUSSION 
This study uses various methods and parameters to estimate 
relative VT due to the characteristics of CSI. 

It is worthwhile to highlight the advantage of the proposed 
subcarrier selection algorithm over the methods proposed in the 
literature [16, 27]. Liu et al. [16] claim that the low-index 
subcarriers provide better monitoring results. However, our 
implementation shows that monitoring performance does not 
relate to the subcarrier index. This is because subcarriers can 
generate good respiration signals when the human chest is 
located in the middle of the Fresnel zone, that is, good 
subcarriers depend on the position of the human chest. In our 
implementation, the estimation accuracy using the low index 
subcarrier could be more than 50% worse than that from our 
approach. Also, Lie et al. [27] propose a different subcarrier 
selection method using the periodicity based on the recurrence 
plot [36] and singular value decomposition. Our 
implementation results from a variety of settings suggest that 
the subcarrier selected by our algorithm is identical to that from 
the method in [27]. However, our method is much simpler and 
faster to implement, and also intuitive because it is based on 
human’s breathing frequency.  

It is possible to use signals from multiple subcarriers. 
However, from our implementation, we note that the selected 
best subcarrier contains the major important information while 
the information from the remaining 89 CSI data may be 
redundant or possibly reduce the estimation performance due to 

wrong peak and valley waveforms in the signals. Thus, in our 
analysis, we use the information obtained from the best 
subcarrier. 

We also extracted the parameters of peaks and valleys from 
the respiration signals and calculated the averaged amplitudes. 
Although the target VT is maintained at the same level, the 
measured amplitudes can slightly different breath by breath. 
This is because we average all the amplitudes in the local 
window. Additionally, a typical Wi-Fi signal includes outliers 
such as a deep valley that significantly deviates from the normal 
pattern. If we blindly apply common filtering methods without 
removing outliers, the resulting amplitude becomes inaccurate. 
These processes are essential to estimate relative VT using CSI.   

VII. CONCLUSION AND FUTURE WORK 
This study presents a new unobtrusive monitoring system using 
a commercial off-the-shelf Wi-Fi device to estimate the relative 
VT. We develop a data processing method to extract the 
respiration features to estimate the relative VT from the raw CSI 
signal. We also devise the subcarrier selection module to 
identify the best subcarrier/antenna combination that can 
capture respiration patterns clearly. To verify the estimation 
accuracy of the proposed monitoring system, we compare our 
estimation results with HPS settings at various VT values. We 
also conduct a real human subject test and compare the 
proposed estimation results with the spirometer at various VT 
values. The proposed monitoring system achieves a high 
correlation coefficient of the relative VT between our 
estimations and the HPS settings at the level of 0.99. In the real 
human subject test, the correlation coefficients of relative VT 
between our estimations and the actual VTs range between 0.93 
and 0.99. Although this study focuses on the VT estimation, our 
monitoring approach can also estimate the RR (see Appendix 
A).  

The proposed approach will provide a comfortable sensing 
environment for people at home or in the hospital due to its 
unobtrusive and non-invasive characteristics. Moreover, it can 
be widely applicable in practice as Wi-Fi systems become more 
popular in many places in modern society. Future work will 
include detecting different types of breathing disorders. Fig. 11 
shows our preliminary results with HPS for the simulated 
abnormal breathing case due to apnea. We can see that the CSI 
can capture the sleep apnea event successfully. In the future, we 
plan to conduct experiments under different apnea events and 
evaluate our estimation performance through both HPS and 
more human subject tests. 

Moreover, considering that Wi-Fi based respiration 
monitoring is very sensitive to the positions of TX-RX devices, 
we plan to develop the system controlling the distance and 
height of TX-RX in order to find the optimal Fresnel zone for 
obtaining the best effort CSI signal.  
 

 
Fig. 11. Respiration signals including sleep apnea event in HPS. 

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 08,2020 at 18:20:32 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3023178, IEEE Sensors
Journal

 10 

REFERENCES 
[1] S. Transue, P. Nguyen, T. Vu and M. H. Choi, “Real-time Tidal Volume 

Estimation using Iso-surface Reconstruction,” in Proc. IEEE 1st Conf. 
Connected Health: Applicat. Syst. Eng. Technologies (CHASE), 2016, pp 
209-218, Washington DC, USA 

[2] Y. Mizobe, H. Aoki and K. Koshiji, “Proposal on Nonrestraint Pulmonary 
Function Test Using Active 3D Measurement for Body Surface,” in Proc. 
World Congr. Medical Physics and Biomed. Eng., vol. 2, 2007, pp. 849–
852. 

[3] M. C. Yu, J. L. Liou, S. W. Kuo, M. S. Lee and Y. P. Hung, “Noncontact 
respiratory measurement of volume change using depth camera,” in Proc. 
Annu. Int. Conf. IEEE Eng. Medicine & Biology Soc. (EMBC), 2012, pp. 
2371-2374, San Diego, CA. 

[4] C. Li, J. Ling, J. Li and J. Lin, “Accurate Doppler radar noncontact vital 
sign detection using the RELAX algorithm,” IEEE Trans. Instrum. Meas., 
vol. 59, no. 3, pp. 687–695, Mar. 2010. 

[5] C. L. Que, C. Kolmaga, L. G. Durand, S. M. Kelly and P. T. Macklem, 
“Phonospirometry for noninvasive measurement of ventilation: 
methodology and preliminary results,” J. Appl. Physiol., vol. 93, no. 4, 
pp. 1515-1526, Oct. 2002.  

[6] A. Bulanova, E. Bukreeva, O. Nikiforova and J. Kistenev, “The analysis 
of breath air by laser spectroscopy method for diagnosis of COPD,” 
European Respiratory J., vol. 44 (no. suppl 58), pp. 1004, 2014.  

[7] L. Boccanfuso and J. M. O'Kane, “Remote measurement of breathing rate 
in real time using a high precision, single-point infrared temperature 
sensor,” in Proc. 4th IEEE RAS & EMBS Int. Conf. Biomed. Robotics & 
Biomechatronics (BioRob), 2012, pp. 1704-1709, Roma, Italy. 

[8] P. K. Dehkordi, M. Marzencki, K. Tavakolian, M. Kaminska and B. 
Kaminska, “Validation of respiratory signal derived from suprasternal 
notch acceleration for sleep apnea detection,” in Proc. Annu. Int. Conf. 
IEEE Eng. Medicine & Biology Soc. (EMBC), 2011, pp. 3824-3827, 
Boston, MA, USA. 

[9] T. Reinvuo, M. Hannula, H. Sorvoja, E. Alasaarela and R. Myllyla, 
“Measurement of respiratory rate with high-resolution accelerometer and 
EMFit pressure sensor,” in Proc. IEEE Sensors Applicat. Symp., 2006, pp. 
192-195, Houston, TX, USA. 

[10] A. Loblaw, J. Nielsen, M. Okoniewski and M. A. Lakhani, “Remote 
respiratory sensing with an infrared camera using the Kinect (TM) 
infrared projector,” in Proc. of Int. Conf. on Image Process., Comput. 
Vision, & Pattern Recognition (IPCV), 2013, pp. 1-7, Las Vegas, NV, 
USA. 

[11] K. S. Tan, R. Saatchi, H. Elphick and D. Burke, “Real-time vision based 
respiration monitoring system,” in Proc. 7th Int. Symp. Commun. Syst., 
Networks & Digital Signal Process. (CSNDSP 2010), 2010, pp. 770-774, 
Newcastle upon Tyne, United Kingdom. 

[12] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, 
R. Moore, P. Kohli, A. Criminisi, A. Kipman and A. Blake, “Efficient 
human pose estimation from single depth images,” IEEE Trans. Pattern 
Anal. Mach. Intell., vol. 35, no. 12, pp. 2821-2840, Dec. 2013. 

[13] L. Xia, C. C. Chen and J. K. Aggarwal, "Human detection using depth 
information by Kinect," in Proc. Comput. Vision and Pattern Recognition 
Workshops, 2011, pp. 15-22, Colorado Springs, CO. 

[14] A. R. Fekr, K. Radecka and Z. Zilic, “Design and evaluation of an 
intelligent remote tidal volume variability monitoring System in e-Health 
Applications,” IEEE J. biomed. Informat., vol. 19, no. 5, pp. 1532-1548, 
Sep. 2015. 

[15] G. F. Lewis, R. G. Gatto and S. W. Porges, “A novel method for extracting 
respiration rate and relative tidal volume from infrared thermography,” 
Psychophysiology, vol. 48, no. 7, pp. 877-887, Jul. 2011. 

[16] J. Liu, Y. Wang, Y. Chen,  J. Yang, X. Chen and J. Cheng,  “Tracking 
vital signs during sleep leveraging off-the-shelf WiFi,” in Proc. 16th ACM 
Int. Symp. Mobile Ad Hoc Networking & Comput., 2015, pp. 267-276, 
Hangzhou, China.  

[17] X. Liu, J. Cao, S. Tang, J. Wen and P. Guo, “Contactless respiration 
monitoring via off-the-shelf WiFi device,” IEEE Trans. Mobile Comput., 
vol. 15, no. 10, pp. 2466-2479, Oct. 2016. 

[18] Y. Ma, G. Zhou, and S. Wang, “WiFi sensing with channel state 
information: A survey,” ACM Computing Surveys, vol. 52, no. 3, Article 
46, pp. 1-36, Jun. 2019.  

[19] D. Tse, and P. Viswanath, “Fundamentals of wireless communication,” 
Cambridge university press. 2005. 

[20] D. Halperin, W. Hu, A. Sheth and D. Wetherall, “Tool release: gathering 
802.11n traces with channel state information,” Comput. Commun. 
Review, vol. 41, no. 1, pp. 53, Jan. 2011. 

[21] IEEE Std. 802.11n-2009, IEEE Standard for Information technology-- 
Local and metropolitan area networks-- Specific requirements-- Part 11: 
Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) Specifications Amendment 5: Enhancements for Higher 
Throughput, Oct. 2009. 

[22] N. Patwari, J. Wilson, S. Ananthanarayanan, S. K. Kasera and D. R. 
Westenskow, “Monitoring breathing via signal strength in wireless 
networks,” IEEE Trans. Mobile Comput., vol. 13, no. 8, pp. 1774-1786, 
Aug. 2014. 

[23] N. Patwari, L. Brewer, Q. Tate, O. Kaltiokallio and M. Bocca, 
“Breathfinding: A wireless network that monitors and locates breathing 
in a home,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 1, pp. 30-42, 
Feb. 2014. 

[24] H. Abdelnasser, K. A. Harras and M. Youssef, “UbiBreathe: A ubiquitous 
non-invasive WiFi-based breathing estimator,” in Proc. of the 15th ACM 
Int. Symp. Mobile Ad Hoc Networking and Comput., 2015, pp. 277-286, 
Hangzhou, China. 

[25] O. Kaltiokallio, H. Yiğitler, R. Jäntti and N. Patwari, “Non-invasive 
respiration rate monitoring using a single COTS TX-RX pair,” in Proc. 
13th Int. Symp. Inf. Process. Sens. Networks., 2014, pp. 59-69, Berlin, 
Germany. 

[26] A. De Groote, M. Wantier, G. Chéron, M. Estenne and M. Paiva, “Chest 
wall motion during tidal breathing,” J. Appl. Physiol., vol. 83, no. 5, pp. 
1531-1537, Nov. 1997.   

[27] X. Liu, J. Cao, S. Tang, and J. Wen, “Wi-Sleep: Contactless sleep 
monitoring via WiFi signals,” IEEE RTSS 2014, pp. 346-355 

[28] F. Adib, H. Mao, Z. Kabelac, D. Katabi and R. C. Miller, “Smart homes 
that monitor breathing and heart rate,” in Proc. 33rd Annu. ACM Conf. 
Human Factors Comput. Syst., 2015, pp. 837-846, Seoul, Republic of 
Korea. 

[29] P. Nguyen, X. Zhang, A. Halbower, and T. Vu, "Continuous and Fine-
grained Breathing Volume Monitoring from Afar Using Wireless 
Signals," IEEE INFOCOM 2016 

[30] H. Wang, D. Zhang, J. Ma, Y. Wang, Y. Wang, D. Wu, T. Gu, and B. Xie, 
“Human respiration detection with commodity wifi devices: do user 
location and body orientation matter?,” ACM UbiComp 2016: 25-36. 

[31] D. C. Montgomery, “Introduction to statistical quality control,” Wiley, 
5th edition, 2005. 

[32] METI, “HPS user guide”, Sarasota, FL: Medical Education Technologies, 
Inc., 2009, pp. 3.17 (83). [Online]. Available: 
http://caehealthcare.com//images/uploads/documents/HPS_User_Guide_
v5.pdf 

[33] D. Zhang, H. Wang, and D. Wu, “Toward Centimeter-Scale Human 
Activity Sensing with Wi-Fi Signals,” IEEE Computer 50(1): 48-57 
(2017) 

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 08,2020 at 18:20:32 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3023178, IEEE Sensors
Journal

 11 

[34] R. Wilson, “Propagation losses through common building materials 2.4 
GHz vs 5 GHz,” Magis networks Inc, Technical report, 2009. 

[35] P. E. Watson, I. D. Watson and R. D. Batt, “Total body water volumes for 
adult males and females estimated from simple anthropometric 
measurements,” Amer. J. clinical nutrition, vol. 33, no. 1, 1980, pp. 27-
39, Jan. 1980. 

[36] J-P. Eckmann, S. O. Kamphorst, and D. R. "Recurrence plots of 
dynamical systems." EPL (Europhysics Letters) vol. 4, no. 9, pp. 973, 
1987 

[37] W. S. Lim, S. M. Carty, J. T. Macfarlane, R. E. Anthony, J. Christian, K. 
S. Dakin and P. M. Dennis, “Respiratory rate measurement in adults--how 
reliable is it?,” Respiratory Medicine, vol. 96, no. 1, pp. 31-3, Jan. 2002. 

[38] L. G. Nielsen, L. Folkestad, J. B. Brodersen  and M. Brabrand, “Inter-
observer agreement in measuring respiratory rate,” PloS One, Jun. 2015, 
10(6):e0129493.  
doi: 10.1371/journal.pone.0129493. eCollection. 

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 08,2020 at 18:20:32 UTC from IEEE Xplore.  Restrictions apply. 


