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Reliability Evaluation of Large-Scale
Systems With Identical Units

Young Myoung Ko, Member, IEEE, and Eunshin Byon, Member, IEEE

Abstract—The reliability assessment of a large-scale system that
considers its units' degradation is challenging due to the resulting
dimensionality problem. We propose a new methodology that
allows us to overcome difficulties in analyzing large-scale system
dynamics, and devise analytical methods for finding the multi-
variate distribution of the dynamically changing system condition.
When each unit's degradation condition can be classified into a
finite number of states, and the transition distribution from one
state to another is known, we obtain the asymptotic distribution of
the number of units at each degradation state using fluid and dif-
fusion limits. Specifically, we use a uniform acceleration technique,
and obtain the time-varying mean vector and the covariance ma-
trix of the number of units at multiple degradation states. When
a state transition follows a non-Markovian deterioration process,
we integrate phase-type distribution approximations with the
fluid and diffusion limits. We show that, with any transition time
distributions, the distribution of the number of units at multiple
degradation conditions can be approximated by the multivariate
Gaussian distribution as the total number of units gets large. The
analytical results enable us to perform probabilistic assessment
of the system condition during the system's service life. Our nu-
merical studies suggest that the proposed methods can accurately
characterize the stochastic evolution of the system condition over
time.

Index Terms—Degradation process, fluid and diffusion limits,
Gaussian process, phase-type distribution, stochastic process.

ACRONYMS AND ABBREVIATIONS

RHS right-hand side
ODE ordinary differential equation
SDE stochastic differential equation
EM Expectation-Maximization
NOTATION
M total number of degradation states
N total number of units in the system, or system size
T system's service life
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,\;’ transition rate from State 7 to State s + 1 at time ¢

number of units at State 7 at time £ among the total
number units, N

S(t) [X1(2), X2(t), -, XM (t)]', system status at time ¢

Yi() standard Poisson process

n accelerating factor (total number of units)

Tzt (t) fluid limit of the number of units at State 7 at time ¢

d (t) diffusion limit of the number of units at State ¢ at
time ¢

D(t) [d} (), d>(), - - -, d™ (t)]', vector of diffusion limits

W(¢)  multi-dimensional standard Brownian motion

X(t) covariance matrix of D(z)

in. (t) number of units at State ¢ and Phase j at time ¢

p;l (t) transition probability from Phase j to Phase j + 1
at State ¢

n; number of phases at State ith

)\§ (t) rate of leaving Phase j of State 4

I. INTRODUCTION

HIS study proposes a new approach for evaluating the re-

liability of large-scale systems with units that follow the
same stochastic degradation process. Examples of large-scale
systems include a utility-scale wind farm with dozens or hun-
dreds of wind turbines (here, each turbine or turbine component
is a unit, and a wind farm is a system), or a solar park consisting
of multiple solar panels. The global trend of constructing large-
scale facilities underscores the need to improve system-level re-
liability assessments for cost-effective decision-making.

With technology advancements, abundant data become
available for characterizing units' degradation processes [1]. In
response, degradation-based reliability analysis has received
significant attention in many applications. Extensive studies
have been performed for modeling a probabilistic degradation
process, and estimating a lifetime distribution of a single
unit-system based on a Wiener process [2], [3], a Gamma
process [4], an Inverse Gaussian process [5], and other sto-
chastic processes [6], [7].

Also relevant to this study is the rich body of literature on
reliability modeling and analysis of a complex system that
consists of multiple components. Significant efforts have been
made to characterize the reliability of the k-out-of-n system
[8]-[10]. For example, among different types of standby re-
dundancy (e.g., hot, warm, or cold standby), Amari et al. [10]
recently investigated the reliability characteristics of systems
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with warm standby redundancy considering the stochastic
dependencies among component failure times. Some of the lit-
erature evaluates the lifetime distribution of a complex system
with components that have different functions. The reliability
of serial-parallel systems is also of interest, e.g., [11]-[13].
Anastasiadis et al. [14] study a multi-component system where
random shocks cause damage in several components, and
model the statistical dependence among the components. In
these studies that model the complex multi-component systems,
analytical methods are derived for simplified models with
several key assumptions, such as multiplicative aging structure
and Poisson shock processes [14], whereas simulations have
been often utilized for evaluating the reliability of a system
with a high degree of complexity [15].

A. Problem Description

Reliability studies in the literature primarily focus on esti-
mating the time-to-failure distribution of a system. However,
when a system consists of multiple units, its degradation status
can inform maintenance decisions. Our study aims to extract
system-level information from its units' degradation process in-
formation. When a system consists of one or a small number of
units, the analysis of the system condition would be tractable.
However, when a large number of units operate in a system,
translating the degradation condition of individual units into
system-level information remains a significant challenge. We
develop a general procedure to characterize the stochastic evo-
lution of the number of units at multiple degradation conditions
over a system's service life.

The degradation condition in many engineering units can
be modeled as a continuous gradual process [16]. Continuous
degradation processes, however, can be translated into discrete
multi-state processes via suitable discretization techniques
depending on the research context. Multi-state conditions have
been used in many studies to represent the different levels of
system performance or degradation levels (e.g., normal, alert,
alarm and failure states) [12], [13], [17], [18]. Fig. 1 illustrates
an example of such multi-state conditions. In this study, we
classify a unit's degradation condition into a finite number of
states for computational tractability.

We assume that the distribution for the transition time from
one state to the next deteriorated state is known (or estimated
from historical data). It is also assumed that each unit s-inde-
pendently degrades from State # to State + + 1,¢ = 1,---, M
— 1, following the same stochastic degradation process. Here,
State 1 denotes the best condition, State A7 — 1 reflects the most
deteriorated condition, and State A7 is the failed condition [17].
All of the units start from a normal state in the beginning of op-
erations, i.e., X1(0) = N and X*(0) = 0 fori = 2,..., M, but
their degradation stochastically progresses. In this study, we de-
fine the system status as a vector of the number of units in the
system at each degradation state. Therefore, the system status at
time ¢, S(¢), is an M -dimensional stochastic process, defined as

S@t) = (X'(),...,.xM@) .

The objective of this study is to derive the asymptotic multi-
variate distribution of the dynamically changing system status

Failure
2
k) Alarm
=
.2
3= O NN
<
<
&
g Alert
@]
Normal

Time

Fig. 1. Example of discretizing a continuous degradation process into a finite
number of states.

during the system's service life, [0, 7], when the number of
units in the system is large. Notice that the system reliability
concerned in this study differs from the general notion of
the probability that a system operates (e.g., probability that a
unit's degradation level is less than a specified threshold level).
Rather, we focus on obtaining the degradation information at
the system level, and tracking the change of the system status
during operations.

B. Summary of Research Results and Contributions

We consider a system where each unit's degradation transi-
tion time follows any general distribution. We first model the
stochastic process where each unit degrades with a Markovian
process (i.e., the transition from one state to another follows a
Poisson process). The Poisson process can be either homoge-
neous with fixed parameters, or non-homogeneous with time-
varying or system status-dependent parameters. Then, we relax
the Markovian assumption, and allow a general non-Markovian
transition process. It is well known that relaxing the Markovian
assumption causes significant difficulties in analyzing the dy-
namic characteristics of a system. We devise a novel method
that makes the analysis of a large-scale non-Markovian system
tractable. Specifically, we employ a phase-type distribution to
approximate general distributions, and extend the techniques
developed for the Markovian process.

To characterize the large-scale system dynamics, we employ
the uniform acceleration technique. The uniform acceleration
technique has been used in analyzing large-scale queueing sys-
tems and networks [19]-[21]. The technique's general applica-
bility for many other stochastic systems can also be found at [22]
and [23]. The basic idea is to obtain fluid and diffusion limits by
accelerating some relevant parameters (e.g., the number of units
in this study) to infinity while suitably adjusting other parame-
ters. Knowing the two limits allows us to find the evolution of
both the average and the variance (or covariance matrix) of the
system status. Our numerical studies, using data available in the
literature, show that the proposed methods can accurately cap-
ture the probabilistic progression of the system status.

We emphasize the main contributions with the following
points. First, we devise a new analytical and computational
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Fig. 2. Markovian degradation process.

approach to characterize the system status when units degrade
according to a Markovian or non-Markovian process. To the
best of our knowledge, the presented model is the first mathe-
matical model for the reliability analysis of large-sale systems
considering both Markovian and non-Markovian degradation
processes. Consequently, the presented approach is generally
applicable to a system where its units' transition time follows
any distribution. Secondly, the proposed approach is computa-
tionally tractable. In the past, analysis of the system dynamics
with many units, and usage of phase-type distributions with
many phases, have been limited to small-scale problems due to
the curse of dimensionality. The presented method, however,
achieves better scalability by combining limit processes and
phase-type distributions. In our numerical study, we use 10
phases per each state for better accuracy, which is unusual in
the previous studies that use only a few phases [24], [25]. We
also obtain numerical solutions within a few seconds, even for
the case of 4 states and 10 phases per each state (Section [V-B).
Lastly, we show that the probability distribution of the system
status asymptotically converges to the multivariate Gaussian
distribution with a time-varying mean and a covariance matrix
whose values depend on the system's age. These results allow
us to perform probabilistic assessment of the system condition
during the system's service life, and provide rich informa-
tion useful for operations and maintenance decision-making
[16]-[18], [26]. For instance, we can track how many units will
be in a critically degraded state (e.g., alarm condition) over
time. One can use such information for warehouse sizing for
spare parts, and maintenance resource planning for ensuring
reliable system operations.

In the remainder of the paper, Section II considers a Mar-
kovian degradation process, and Section III extends the
approach for a non-Markovian degradation process. Section [V
provides numerical results. Finally, we conclude the paper in
Section V.

II. SYSTEM STATUS ASSESSMENT WITH MARKOVIAN
DEGRADATION PROCESS

This section develops a method for evaluating the system
status when each unit's degradation process has a memoryless
property, and thus follows a Markovian degradation process (see
Fig. 2). The presented method in this section will be used as a
basis for evaluating the system status in a general, non-Mar-
kovian degradation process in Section III.

A. Model

In the Markovian degradation process, each unit starts from
State 1 at time 0, moves to the next state after a random amount
of time, and continues until it reaches the failure state, A7. The
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number of units at State i at time ¢, X*(¢),i = 1,---, M, can
be obtained by solving the following integral equations.

i

X)) =N-V; /Ain(s)ds ) )
13 ’ t
X2(t) =Y M X1(s)ds | — V3 N X2(s5)ds |,
/ /
2)
t t
X3(t) =Ys N2X2(s)ds | — Y3 NX3(s)ds |,
/ /
A3)

XM14) =Yy o /)\iw’QXM’Q(s)ds

0
t
Vi / AM=1XM -1 () g | | 4)
0
t
XM(t) =Y 1 /)\;M’IXM’l(s)ds , (5)
0
where Y;, ¢ = 1,---,M — 1, is a mutually s-independent

standard Poisson process [22], denoting the number of arrivals
or departures up to time ¢, depending on the sign before it.
The integrand in Y;(-) is the rate of arrival or departure at time
s, which is, in fact, the rate of a non-homogeneous Poisson
process. In (1)—(4), the two terms on the right-hand side (RHS)
represent the counting processes of inputs to the corresponding
state, and outputs from the state, respectively. Therefore,
X%(t),i = 1---, M, can be obtained by counting the number
of arrivals to State 7, and departures from State 7, until time ?.
In (1), the number of units at State 1, which starts from NV at
time 0, decreases by Y;(+) because Y;(-) counts the number of
departures from State 1. Note that, in (2)—(4), the first term on
the RHS, the input to the corresponding state, is the same as the
number of departures from the previous state. Because X (¢)
in (5) is the failure state, it only includes the input counting
process.

For general applicability, we use time-varying transition rates
(see the subscript# of Ai,i = 1,---, M, in (1)—(5), and Fig. 2).
Using the time-varying rates enables us to incorporate temporal
variations, such as daily or seasonal effects on the degradation
process. When a constant transition rate is used (i.e., Al = \%),
the transition time follows the exponential distribution. With the
time-varying rates, the transition time is not exponentially dis-
tributed, having a different distribution (see [27] for the details).

To solve (1)—(5), the Matrix Geometric method, a
well-known analytic methodology for Markov Chains [28], can
be used for small-scale systems. However, when a system con-
sists of a large number of units, it suffers from poor scalability
because the problem size increases on the order of A% . In
the next section, we apply the uniform acceleration technique
[19]-21], and find an approximate solution by using fluid and
diffusion limits for large-scale systems.
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B. Fluid and Diffusion Limits

We introduce an accelerating factor, 7, to apply the uniform
acceleration technique. The accelerating factor is indeed the
number of units, NV, in the system. We increase the accelerating
factor (i.e., the number of units) to infinity, and adjust the terms
inside Y;(-) in (1)~(5) accordingly. We rewrite (1)—(5), and con-
sider a set of the following stochastic processes, { X" (¢) },>1.

t
XLn
xine =y -vi | [ ),
n

0

¢
. Xtn
X“’(t) =Y /‘ﬂ)\iﬁds
1
t X2
v, /m&ﬁﬁhs,

t
X2m

X3"7(t) =Y /n)\gﬁds
1

0

t
X3
v | et )
n

0

1
XZ\/172777
XMfl,n(t) =Y o /17)\‘19\/[72 ’ (5) ds
] n
: XM—l n
— Yy /U)\iw—l—(s)ds

n
0

1

' X M-17
X‘M’n(t) =Yun_1 /‘ﬂ)\yiliy (S) ds
] n
Then, by taking n — oo, we obtain the fluid limit in Propo-
sition 1. (Detailed proofs are included in the Appendix.)
Proposition 1: Suppose that T is a service life of the system.
Ont € [0,T] forT > 0,

X (t
lim ®)

n—00 n

= Z'(t) almost surely,

where #1(0) = 1, '(0) = 0 fori € {2,..., M}, and

d _, 1-1
gﬁaw-—&wa»
E:EQ(zt):Ai:z-l(t) N F2(t),
9By = N (1) — N2 (1),

The fluid limit, #(¢), i = 1,---, M, represents the average
fraction of units at State ¢ at time ¢ among N units. This fluid
limit will be used to find the approximate mean value of the
number of units at State ¢ (see Lemma 1 and the following dis-
cussions). The following remark states that the sum of the fluid
limits is equal to one.

Remark 1: Ont € [0,T] for T > 0,

M .
Zi”(t) =1.

Next, to obtain the diffusion limit, we define two matrices.
Define an M x M matrix, A(t) = (a; ;(t)), as follows.

a; ;{(t) = — /\i forl<i<M—1,
aii1(t) =Ai"1for2 <i< M.

Define another M x M matrix, B(¢) = (b; ;(t)), as follows.

bii(t) = — 4/ AiFi(t) for 1 <i< M —1,
bii1(t) = \/Wfor 2<i<M.

Now, with the matrices A (¢) and B(#), Proposition 2 presents
the diffusion limit.
Proposition 2: Ont € [0,T] for T > 0,

Xi,n t . .
lim /7 { X El(t)} = D'(t) in distribution,

1n—00 n

fori = 1,---, M, where D(t) = (D(¢),...,D™(t)) is the
solution to the following stochastic differential equation (SDE).

dD(1) = A()D(t)dt + B(t)dW(t),D(0) =0,  (6)

and W (¢) is an M -dimensional standard Brownian motion. The
covariance matrix of D(t), X(¢#), is the solution to the following
ordinary differential equations (ODEs).

%2@) — A(S(H) + SAQ) + BOBER).  (7)

With the obtained fluid and diffusion limits, Lemma 1 states
that the diffusion limits follow the multivariate Gaussian distri-
bution.

Lemma 1: The diffusion limit process, D(%), is a Gaussian
process. That is, for ¢t € [0,T], D(t) = (D(¢),...,DM(t))
follows the multivariate normal distribution with the mean
being an M x 1 zero vector, and the covariance matrix ().

The results in Propositions 1 and 2, and Lemma 1, lead us
to derive the asymptotic multivariate distribution of the system
status. Using Proposition 2, for a large n, we can approximate
X5n(t) as follows.

X5(t) ~ nEt(t) + /nD'(t) in distribution,

and from Lemma 1, we obtain

B[X"(1)] ~na'(t),
Var [X*(1)] ~nVar [D'(t)],
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and the covariance matrix of 8(¢) is approximated by nX(z). As
such, for the system with IV units, we can find the approximate
mean and variance of the number of units at each state, 1 =
1,---, M,

E[X'(t)] »NZ'(t),
Var [X*(t)] = NVar [D'(t)],

and the covariance matrix of S(¢) is approximately
given by NX(t). Therefore, the distribution of the
system status at time ¢, S(¢), can be approximated by
the multivariate normal distribution with a mean vector
N[z'(t),---,2(t)]', and a covariance matrix, N(2), i.c.,
S(t) ~ MVN(NzZ'(t),---,2M ()], NS(t)). Because
Z(t) denotes a fraction of the number of units at State i, the
sum of the elements in the mean vector of the system status
distribution is equal to the total number of units in the system,
e, "M NE(t) = N.

C. Implications

Our proposed method with the Markovian degradation
process provides some important benefits. First, the model
discussed in Section II-A is intuitive. Recall that we formulate
the model by counting inputs and outputs at each state. Also,
our model allows the use of time-varying transition rates to
incorporate heterogeneous degradation rates that can be caused
by dynamic environmental and operations conditions such as
seasonal variations.

Another benefit can be found at its computational efficiency
for solving large-size problems, overcoming the computational
limitations of existing techniques such as the Matrix Geometric
method [28]. Even for a system with several hundred or thou-
sand units, the ODEs in fluid and diffusion limits can be ob-
tained within a few seconds using numerical solvers in a stan-
dard desktop computer. In fact, the computational complexity in
the ODEs in Propositions 1 and 2 is not affected by the number
of units because the accelerating factor, 7, will disappear as 7
— 00.

In spite of the aforementioned benefits, we acknowledge that
the assumption of the Markovian process, namely the memo-
ryless property, could be restrictive in real applications. In the
next section, we relax this assumption, and analyze a general
non-Markovian system.

III. SYSTEM STATUS ASSESSMENT WITH NON-MARKOVIAN
DEGRADATION PROCESS

When the Markovian assumption is removed from the degra-
dation process, tracking the dynamics of a large-scale system
becomes extremely difficult. That is the main reason many
studies have been focusing on the Markovian process in the
past. In reality, the lifetime distribution of units can be any
suitable distribution. In fact, Weibull, lognormal, and gamma
distributions have been widely used to describe the lifetime of
units [29]. This section extends the methodology presented in
Section II, and considers a degradation model where the tran-
sition time between two states follows a general distribution.
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Fig. 3. Example of a non-Markovian degradation process.

For example, Fig. 3 depicts the degradation process where each
transition time follows the Weibull distribution.

A. Approximation With Phase-Type Distributions

The fluid and diffusion limits developed in the Markovian
degradation process in Section II cannot be directly applied
to a non-Markovian process because all of the limit processes
are obtained under the Markovian assumption. To evaluate the
system's status in the non-Markovian degradation process, our
main idea is to integrate fluid and diffusion limits with phase-
type distributions. Phase-type distributions have been used to
approximate other distributions, and it is well known that phase-
type distributions are dense in all positive-support distributions
[30]. Therefore, we approach the problem by approximating the
transition distributions (e.g., Weibull(a;, 8;), ¢ = 1,---, M
— 1, in Fig. 3) using phase-type distributions, and then com-
bining the results with fluid and diffusion limits.

A phase-type distribution is a probability distribution con-
structed by a mixture of exponential distributions [28]. There
are several well-known phase-type distributions including
Erlang, hyper-exponential, and Coxian distributions; and many
algorithms have been developed to approximate general distri-
butions with phase-type distributions [30]-[34]. Among them,
Asmussen ef al. [30] show that the Coxian distribution produces
high approximation quality for many distributions including
Weibull and lognormal distributions. Therefore, we select the
Coxian distribution, and use the Expectation-Maximization
(EM) algorithm to estimate the Coxian distribution parameters
[30]. The Coxian distriubtion can also provide a good fit when
empirical transition time data are available. It, however, should
be noted that our focus is not on developing an algorithm for
finding phase-type distributions; we can employ any appro-
priate phase-type distribution suitable for given transition time
distributions or data.

The Coxian distribution consists of several phases. For ex-
ample, Fig. 4 illustrates a Coxian distribution with five phases
for approximating the transition time density from State 1 to
State 2, showing how the Coxian distribution works inside each
state and between states. One can see that the Coxian distribu-
tion allows a transition from any phase at one state to the first
phase at the next state. Suppose that there are n; phases for the
transition distribution from State i toi+1,i = 1,---, M —1.Let
)\; and p; be the parameters of the Coxian distribution for Phase
7 of State i (see Fig.4),t =1,---, A —1,5 =1,---,n;. Given
the original transition distribution (e.g., Weibull(«;, 3;)), we
generate transition time data from the distribution, and estimate
the Coxian distribution parameters, )\; and p; , using the EM al-
gorithm [30] fors =1,---,A{ —1,andj =1, ---,n;.

In the past, in spite of the accurate approximation capability
of the phase-type distributions, their usage has been limited to
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Fig. 4. Approximation of a transition distribution with the Coxian distribution.

small-scale problems due to their poor scalability. We overcome
this limitation by employing fluid and diffusion limits in the next
section.

B. Model

We use the results from the Coxian distribution approxima-
tion to model the system status. We define

X(t) = (X{(t),.., Xp (), X (1),
XM @, XM W)

MM -1
each element of which is the number of units at the cor-
responding phase and state at time {. The initial value is
X(0) = (N,0,...,0)". Note that each phase is virtual, and
only used for approximating the original distribution. We can
model X (t) with the following integral equations.
¢
i = - v | [ pinxieds

Q
t

v | [ a-p)aixieas).

0
ni,l—l t
SHURED S el I NCE s P S BEE
=1 9
t
S GRTE ) BRSO
0
¢
¥ ( [ xixicas
0
¢
—Y,ig (/(1—p§)A§X{(s)ds for 2<i< M —1,
0
¢
X]i‘(t)—yj—l,l (/p§—1)‘]—1Xgi—1(5)d5
0
t
v (/p;Agx;(s)ds
0

t

/(lfp;’») A;X;(s)ds

0
for1<i<M—-1,2<j<n;—1,
13

XE =Y 1, /p;i,lxgi,lx;;i,l(s)ds
0
i

7
— Y,

Y /)\f”Xf”(s)ds forl <i<M 1,
a
nay-1—1 i
XY= 3 VA et X s
=1 0
t
M- — M—
| [ s
0

Similar to the model in the Markovian degradation process
in Section II-A, each term on the RHS can be interpreted using
input and output counting processes. The difference is that input
and output can be made among phases either inside a state or
between states.

C. Fluid and Diffusion Limits

The model in Section III-B is not solvable for large-scale sys-
tems. We use the fluid and diffusion limits by accelerating the
number of units. Consider a sequence of stochastic processes,

{X(#)}n>1,

t

X1 (g
Xll‘n(t) =n- Y11,1 /npi)\%lT()ds
0
/ X17(s)
v | [ )
0
ni1—1 t i—1
i i i1yyic1 X (s
X0 = Y v [t
=1 0 g
t
) . i-lnig
+Y7}Li—711,1 /nA'Z/;}1 hict ( )dS ’
0
[ i)
i iyi o1 (S
- Y (/77101 = ds
0
t (s)
‘ L s
le,z (/77(1 *pll) Al ! ds
0
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0
forl<i<M-1,2<j<n;—1,
t )
. X0 (s)
X0 =i, v | v i 22
0
t .
i i Xnl(s) ,
— Yn“1 n/\m —2=Lds | for1<i<M-—1,
/ ]
NAT—1— 1
ORI T
=1
L xM-1i(g)
% /'7(1 _plw 1) /\iMA l ds
/ n
t
XA171’77(5)
M nar
Y"’lM } 1 /nAAJ]\/[ 11 Mnl ds

0

Then, the solution process to find the asymptotic distribution
of the system status is similar to that in Section II. First, by
taking n — oo, we derive the fluid limit, which leads to Propo-
sition 3.

Proposition 3: Ont € [0,T] forT > 0,

.M
lim 230
N—>00 n

= ;T:;(t) almost surely,

where Z}(0) = 1, and #(0) = 0 for all 4, j except i = 1 and j
= 1; and
d

ST = — M),
d ni_1-1
GHO =30 (= )N
=1
SN0 - A for2 i<,
d —_q 7 7 —i it
%xj(t) :pj_1>\j_19«‘j—1(t) - /\jxj(t)

forl<i<M-1,2<j<n;—1,

d_; i i i i i
ﬁwni (t) :pniflAniflxnifl(t) - Aniwni (t)
for1<i<M-—-1,
d nM,l—l
g m= > -p"HNTET
=1

)

The fluid limit, & (), implies the fraction of the units at Phase
j of State ¢. Therefore, the sum of all of the fluid limits becomes
one as Remark 2 states.

Remark 2: Ont € [0 T) forT > 0,

ng

>3

=1 5=1

Next, we define the following two matrices for deriving the

diffusion limit. Define a [(Zf\ifl n;) + 1] x [(Z:i;l n;) + 1]

matrix A (t)
—land 2 < 5 < ny,is
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= (a; ;(t)) whose (4, j)th element, for 1 <7 < M

(1(2;‘c t )+1 (Ek o"") l(t)
a(z,‘:o"k)ﬂ,(z? ) +i 50 p] 1)‘3 15
(i) (D) 0 =
S (5 ) = (L= 50)
)1 (Shy) =
where ng = 0. Also, define a [(Zf‘i{l ni)+1] [Zﬁil(m -

1)] matrix B(t) = (b; ;(t)) whose (¢, j)th element is

bjjzj 1 '[’) = — 1/]3})\}‘%},

(
b2, (t) = (1 —p}) Ajz},
boy 125 (1) =4/ (1 — ) )\1:1"1
bjt1,25-1(t) = \/PjA}Z],
by omy 1 () = — /AL 7|
(

)
) =/ ATy

bq+1,2n, -1 (F

forl <j3<ny—1,

Y2y —1)+25-1 (t) =

b—i- i
Zk:ll nk+J:Zk:1

b e, (znk 1+23 (1 pJ )\; 4
k=1
b ne+1, (an 1+2J (1 J J7
k=1
bz; 1lnk+]+1 Zk 1(2nk 1+25— 1 m,
bz;=1 nk,Z;:l(an 1)(t)7 - A%,‘L?@iv
b w0 () =V N

for2<i< M—1andl < j < n; —1. With the matrices A ()
and B(t), Proposition 4 derives the diffusion limit.
Proposition 4: Ont € [0,T] for T > 0,

li X;’"(t) z = Di(t) in distrib
im /7 P .LJ( ) % (t) in distribution,

n— o0

n;, where
DM— 1 (t),
!
L DXL (1), DY (1))

fori=1,--,M,j=1,--,

D(t) = (D}(t),..., DL (1),

is the solution to the following SDE.

dD(t) = A(®)D(t)dt + B(t)dW (), D(0) = 0,

(®)
and W(?) is a [(Z:i;l 2n; — 1) + 1]-dimensional standard

Brownian motion. The covariance matrix of D(¢), (), is the
solution to the following ODEs.

d
50 = AOS(@) + ()

A(t) +B()B(t). )
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Now, Lemma 2 derives the asymptotic distribution of the dif-
fusion limit process, D(t).

Lemma 2: The diffusion limit process, D(#), is
a Gaussian process; that is, for ¢ € [0,7], D(t) =
(Di(t),..., DL (t),...,DY 7 (¢),...,.DM 1 (1), DM (1))
has a multivariate normal distribution with the mean being a

M-1 . .

(>-i—; mi + 1) x 1 zero vector, and the covariance matrix
%(t).

Using the results in Propositions 3 and 4, and Lemma 2, for
a large 7, we can approximate X" (t) as follows.

Xi(t) ~ 0z (t) + /1Di(t) in distribution,

and
E {X}”(t)] o (1),
Var {X}"(t)] ~qVar [Di(#)] .

That is, for IV units in the system, we obtain

E [X(t)] ~ Nzi(t),

Var [X}(t)] ~ NVar [Di(t)] .

Note that the phases are virtual, and we are interested in the
number of units at each degradation state. The number of units
at State i is

Xit) = iX}(t).

Then, we can easily calculate the mean vector and covariance
matrix of S(t) = (X(t),---, XM (t))’ using basic formulae
on the mean and variance of the sum of random variables. The
distribution of the system status at time ¢, S(¢), approximately
follows the multivariate normal distribution with a mean vector,
N[ 2L (1), -+, 327 2M (1)]'. The ith diagonal element,

J=1""J =177
and the (4, ')th off-diagonal element of the covariance matrix

of S(t) are

Var [X*(t)] = iNVar [Di(t)]

j=1

+3° Y NCov[Di(t), Di(t)],
J=L4'=1§'#]

nj ey
’

Cov [Xi(t),xi’(t)} =33 NCov [D;i(t),D;,(t)} ,

j=1j'=1

respectively, for ¢, i = 1,---, M, i # ', where Var[D}(t)],
Cov[Di(t), D% (t)], and Cov[Di(t), D;I, (t)] are the elements of
X (1) obtained from (9).

D. Implications

We summarize the advantages of our proposed approach for
evaluating the system status in the non-Markovian processes.
First, the proposed approach is general, and applicable to many
applications. The phase-type distributions can approximate
general distributions widely used in reliability studies, and can
directly fit empirical transition data without explicitly finding

transition distributions from the data [30]. Then, with the
phase-type distribution approximation, we can apply fluid and
diffusion limits to the non-Markovian degradation processes.

Next, by combining fluid and diffusion limits with the phase-
type approximations, the computational complexity increases
relatively slowly by the number of phases we use. In previous
studies using phase-type distribution approximations, the usage
of many phases (for better approximations) has been restricted
due to the poor scalability (known as the state-space explosion
problem). In our approach, the number of ODEs is O(n?) where
n is the number of phases. Because the ODEs are only first order
linear, we can obtain the solution in a few seconds even when we
have more than 5 states, and 10 phases per each state. Therefore,
the proposed approach is computationally efficient in evaluating
the system status over its service life. To our best knowledge, the
only way to evaluate the system status so far is to rely on simula-
tions. Simulating the operations of a large-scale system over its
service life can present computational issues, even with today's
computing power. As such, our analytical approach can save
computational time. The last but most important benefit of the
presented method is that the results of the multivariate Gaussian
distribution allow us to make a probabilistic assessment of the
system status during the system's lifetime.

IV. NUMERICAL RESULTS

Motivated by recent construction of large-scale wind farms,
we consider a wind farm with fifty turbines. We choose to use
fifty units to evaluate the reliability assessment capability of the
presented methodology in a mid-scale problem. As the system
size increases, without additional computational burden, the
proposed methods produce more accurate results due to its
asymptotic properties.

In our implementations, we investigate the degradation
process of gears inside a wind turbine gearbox. Because no
actual data on multi-state degradation processes are available
to us, based on the estimated lifetime distribution available in
[35], we choose appropriate transition rates, and transition dis-
tributions for the Markovian process, and the non-Markovian
process in Sections IV-A, and IV-B, respectively.

Fig. 5 illustrates the overall flow of our numerical study. The
study starts with problem settings such as the number of states
(we use M = 4), the number of turbines (we use N = 50), and
transition time distributions (we use exponential and Weibull
distributions for Markovian and non-Markovian processes, re-
spectively). In the analytical approach, we first find the Coxian
distributions for approximating the actual transition time distri-
butions using the EM algorithm (for the Markovian case, this
step is unnecessary). We then derive a system of ODEs as de-
scribed in Sections II and ITI. We solve the system of ODEs with
a numerical solver (in this study, we use GNU Octave, an open
source numerical solver compatible with Matlab). To evaluate
the accuracy of the proposed methods, we compare the results
from the proposed analytical approach with the simulation re-
sults. In the simulation study, the computer code is written in
C++ under the Windows environment. After creating states and
turbine objects, we generate random numbers from the transi-
tion time distributions, and simulate the state transitions until
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Fig. 5. Flow chart of the numerical study.
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Fig. 6. Comparison of means from fluid limits with simulation results in the Markovian degradation process. (a) Average number of units at State 1. (b) Average
number of units at State 2. (c) Average number of units at State 3. (d) Average number of units at State 4.

the predefined service life, T, is reached. We run 5,000 s-in- mean and covariance of the number of turbine gears at each
dependent instances, and record the number of turbines at each  state between the solution of the ODEs and the result from the
state over time. Once the simulation is done, we compare the simulation.
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Fig. 7. Comparison of variances from diffusion limits with simulation results in the Markovian degradation process. (a) Variance of number of units at State 1.
(b) Variance of number of units at State 2. (¢) Variance of number of units at State 3. (d) Variance of number of units at State 4.
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Fig. 8. Density of the number of units at State 1 in the Markovian degradation process: analytical Gaussian density from the proposed methods, and empirical

density from simulations. (a) Density at £ = 5. (b) Density at ¢ = 35.

A. Markovian Degradation Process

We first evaluate the system status when wind turbine gears'
degradation follows the Markovian process. We consider four
degradation states (i.e., normal, alert, alarm, and failure) similar
to the states used in [17], [18], [36]. According to Andrawus et
al. [35], the average lifetime of wind turbine gears is 5,070 days
(or about 169 months). In this implementation, we choose the
Markovian transition rates as A} = 0.01409, A? = 0.01878, and
A} = 0.02254 per month, so that the resulting average lifetime
with the four degradation states is consistent with that in [35].

Figs. 6 and 7 show that the means and variances from fluid
and diffusion limits coincide with those from simulations. From
Fig. 6, we can see that the expected number of units at State 1
(i.e., normal state) decreases over time. The expected number of
gears at States 2 (i.e., alert state) and 3 (i.e., alarm state) peaks
ataround 70, and 110 months, respectively, whereas the number

of gears at State 4 (i.e., failure state) increases over time. Fig. 7
indicates that the uncertainty is large when the age of gears is
between 50 and 150 months.

Because the limit process is a Gaussian process, we can com-
pletely identify the distribution of the number of gears at each
state with the obtained mean and variance. Fig. 8 shows the den-
sity of the number of gears at State 1 at two different times. In
the very early age of operations, we observe a truncation in the
right side of the density (see Fig. 8(a)), and there is a slight dis-
crepancy between the analytical density obtained from the pre-
sented method and the empirical density from simulation runs.
This discrepancy occurs because the analytical density is ob-
tained from the limit process with the assumption of the infi-
nite number of units; but, in our implementation, the number of
gears is bounded between 0 and 50. We, however, can confirm
the normality from Fig. 8(b) as the gears pass the early stage of
operations.
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TABLE I
GAUSSIAN DISTRIBUTION FOR THE NUMBER OF UNITS AT EACH
STATE IN THE MARKOVIAN DEGRADATION PROCESS

Age State 1 State 1 | State 3 | State 4

(in months) | (Normal) | (Alert) | (Alarm) | (Failure)
50 N(25,12) | N(16,11) | N(7,6) N(3.,3)
[18-32] [9-22] [2-11] [0-7]

100 N(12,9) | N(14,10) | N(11,8) | N(13,10)
[6-18] [8-20] [5-16] [7-20]

150 N(6,5) N(9,7) | N(10,8) | N(25,12)
[2-11] [4-14] [4-15] [18-32]

200 N@3.3) N(.5) N(7,6) | N(35,11)
[0-6] [1-10] [2-12] [28-41]

250 N(1,1) N(3.,3) N4.4) | N@4L1,7
[0-4] [0-6] [1-8] [36-46]

300 N(1,1) N(2,2) N(3,3) | N(45.5)
[0-2] [0-4] [0-6] [41-49]

Note: The numbers are rounded to the nearest integers.
The numbers in the brackets in each cell denote the 95%
confidence interval restricted between 0 and 50.

Table I summarizes the Gaussian distribution and 95% con-
fidence intervals for the number of units at four states at sev-
eral selected times. We can see that at ¢ = 150, on average,
6, 9, 10, and 25 units are at States 1 through 4, respectively.
It indicates that, even though the average lifetime of gears is
about 169 months, preventive maintenance is necessary before
150 months to avoid a mass number of failures. Moreover, we
can obtain the covariance matrix of the system status at time
t, NX(t), in the multivariate Gaussian distribution, which al-
lows us to perform multivariate analysis. For instance, we can
obtain the probability that more than 25 units (i.e., half of the en-
tire units) are at the alarm or failure states at any selected time
during a system's life.

B. Non-Markovian Degradation Process

Andrawus ef al. [35] estimate the lifetime of gears using the
Weibull distribution, Weibull(2.5,190). In our implementation
in the non-Markovian degradation process, we assume that each
transition follows the Weibull distribution, and consider four
degradation states. In the three transition distributions, we use
the same shape parameter, o; = 2.5, ¢ = 1, 2, 3, as that in
[35]. To find the scale parameters, we split the scale param-
eter (i.e., § = 190) in [35] into three portions, 81, 32, and 3.
To keep consistent with the parameters used in the Markovian
process in Section [V-A, we choose the three scale parameters
so that the expected state transition times are equal to those in
Section IV-A. The time unit of the scale parameter in [35] was
originally in days, but we convert it to months to relieve the
imbalance between scale and shape parameters. The following
Weibull distributions are used as the transition distributions.

* State 1 to 2: Weibull(2.5, 80)

* State 2 to 3: Weibull(2.5,60)

* State 3 to 4: Weibull(2.5,50)

Next, we approximate the chosen Weibull distributions with
Coxian distributions. Table II shows the estimated parameters
of the corresponding Coxian distributions with ten phases using
the EM algorithm in [30]. Fig. 9, which compares the transition
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TABLE 11
ESTIMATED COXIAN DISTRIBUTION PARAMETERS

State transition
1to2 2t03 3t04
A P A P A D
0.1231 | 1.0000 | 0.1638 | 1.0000 | 0.1961 | 1.0000
0.1231 | 0.9994 | 0.1638 | 0.9994 | 0.1961 | 0.9993
0.1231 | 0.9642 | 0.1638 | 0.9646 | 0.1962 | 0.9649
0.1220 | 1.0000 | 0.1618 | 1.0000 | 0.1933 | 1.0000
0.1220 | 0.9563 | 0.1618 | 0.9501 | 0.1933 | 0.9443
0.1226 | 0.7324 | 0.1632 | 0.7386 | 0.1957 | 0.7442
0.1153 | 0.9947 | 0.1543 | 0.9923 | 0.1856 | 0.9907
0.1152 | 0.9995 | 0.1540 | 0.9986 | 0.1853 | 0.9975
0.1152 | 0.9972 | 0.1541 | 0.9926 | 0.1853 | 0.9871
0.1153 | 1.0000 | 0.1544 | 1.0000 | 0.1861 | 1.0000

Phase

SO 0T W=

TABLE III
GAUSSIAN DISTRIBUTION FOR THE NUMBER OF UNITS AT EACH
STATE IN THE NON-MARKOVIAN DEGRADATION PROCESS

Age State 1 State 2 State 3 State 4
(in months) | (Normal) | (Alert) (Alarm) | (Failure)
50 N(37,10) | N(12,9) N(1,1) N(0,0)
[31-43] [6-18] [0-2] [0-0]
100 N(8,7) | N(28,12) | N(12,9) N(2,2)
[3-14] [21-35] [6-17] [0-5]
150 N(1,1) N(11,9) | N(21,12) | N(17,11)
) [0-2] [6-17] [14-27] [11-24]
200 N(0,0) N(@2,1) N(10,8) | N(39,9)
[0-0] [0-4] [4-15] [33-45]
250 N(0,0) N(0,0) N(2,2) N(48,2)
) [0-0] [0-1] [0-4] [46-50]

Note: The numbers are rounded to the nearest integers.
The numbers in the brackets in each cell denote the 95%
confidence interval restricted between 0 and 50.

distribution from State 1 to 2 (i.e, Weibull(2.5, 80)) and the cor-
responding Coxian distribution, shows that the 10-phase Coxian
distribution closely approximates the Weibull distribution.

We apply the limit processes to the resulting Coxian distri-
butions, and compare the mean and variance of the number of
gears at each state from the results of 5,000 s-independent sim-
ulation runs. Figs. 10 and 11 suggest that the results from the
proposed analytical methods and simulation runs coincide, con-
firming that the proposed methods generate accurate evaluation
for the system status in the non-Markovian degradation process.

Similar to the results in Section IV-A, in the densities of the
number of turbine gears, we observe truncations in some cases
due to the bound of the number of gears (see Fig. 12(a)). But,
in most cases, Gaussian distributions obtained from the limit
processes are complete without truncations, and the empirical
densities from the simulation coincide with the Gaussian distri-
butions (see Fig. 12(b)). Table III summarizes the distribution
and 95% confidence intervals for the number of units at each
state. We can see that the number of units at the alarm state in-
creases up to ¢ = 150 months, but the uncertainty increases as
well. After 150 months, the number of units at the alarm state de-
creases, and many units transit to failure states (also see Figs. 10
and 11). Around 250 months, most units are in the failure state.

We also note that the distributions in the non-Markovian
process differ from those in the Markovian process, even
though the same average transition times are used in both
processes. This result suggests that careful investigation is
necessary to define the degradation transition distributions.
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Fig. 9. Weibull (2.5, 80) and corresponding Coxian distributions. (a) Probability density function fitting. (b) Cumulative distribution function fitting.
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Fig. 10. Comparison of means from fluid limits with simulation results in the non-Markovian degradation process. (a) Average number of units at State 1.
(b) Average number of units at State 2. (c) Average number of units at State 3. (d) Average number of units at State 4.

V. CONCLUSION

We present a general methodology to analyze the system re-
liability with a large number of identical units. In the literature,
many degradation-based reliability studies focus on estimating a
lifetime distribution for a system. From this conventional view-
point, we switch to estimating the distribution of the number of
units at multiple degradation states, and characterize the evolu-
tion of the system status.

We use fluid and diffusion limits, and derive the Gaussian dis-
tribution for the number of units at each state. When the units
follow a non-Markovian degradation process, we integrate the
phase-type approximation with fluid and diffusion limits. We
believe this approach is a breakthrough to overcome computa-
tional difficulties in analyzing non-Markovian processes. Our
implementation with fifty units suggests that the presented ap-
proach is accurate in characterizing the system dynamics. Due to
its asymptotic properties, our methodology will generate more

accurate results for larger-scale problems. For example, with a
larger number of units, we will have fewer truncations in the
Gaussian density that are caused by the bounded number of
units. The presented approach is also computationally efficient
to assess the reliability of large-scale systems.

The outcomes of this study will be useful for evaluating the
system reliability at the design stage when historical operational
data, or degradation testing data, are available for estimating
the state transition distributions. One avenue of research we in-
tend to pursue in the future is to update the system status, using
real-time sensor data taken from individual units during system
operations.

The proposed approach is most suitable when a system con-
sists of many identical units that follow the same stochastic
degradation processes. The representative applications include
a wind farm with a large number of turbines where each tur-
bine uses the same type of components (e.g., same gears for
every turbine), and a solar park with identical solar panels. The
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Fig. 11. Comparison of variances from diffusion limits with simulation results in the non-Markovian degradation process. (a) Variance of number of units at State
1. (b) Variance of number of units at State 2. (c) Variance of number of units at State 3. (d) Variance of number of units at State 4.
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Fig. 12. Density of the number of units at State 1 in the non-Markovian degradation process: analytical Gaussian density from the proposed methods, and empirical
density from simulations. (a) Density at time ¢ = 10. (b) Density at time ¢ = 70.

results of this study will be used to optimize management deci-
sion-making for those systems. For example, wind turbine man-
ufacturers provide a short-term warranty (e.g., 12 months) after
installations. After the warranty period, wind farm operators
need to make post-warranty decisions, including the number
of maintenance crew members, the warchouse size, and when
and how many spare parts need to be ordered [37], [38]. These
types of decisions are critical due to many logistic complex-
ities such as the huge component size, and the heavy equip-
ment needed to access turbines. We believe the results of this
study will provide useful information for cost-effective opera-
tions and maintenance decision-making. We acknowledge that
some other power generating systems use non-identical compo-
nents even though their functions are similar. Our proposed ap-
proach has limitations for the systems with non-identical com-
ponents, but we note that our future research will consider het-
erogeneous degradation processes for obtaining system-level
reliability information. We also plan to extend the presented
approach to a general case where the units' operational ages

are heterogeneous due to different installation times, repair, re-
placement, etc.

APPENDIX

Proof of Proposition 1: A function f(-) is Lipschitz if f(-)
satisfies the condition

|f(z) — f(y)] < K|a — y| for some constant K.

Mandelbaum ef al. [19] show that, if the rate functions are Lip-
schitz, and the initial values converge, the fluid limit holds in
general cases (see Theorem 2.2 in [19]). In our case, the rate
functions, which are the integrands in the integrals inside ¥;(-),
are linear (Lipschitz), and satisfy the conditions in Theorem 2.2
in Mandelbaum et al. [19]. Therefore, the proposition is proved.
O

Proof of Proposition 2: The rate functions, i.e., the integrands
in the integrals inside Y;(-), are linear and Lipschitz, which im-
plies that they satisfy the conditions for the existence of diffu-
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sion limits, following the results from Mandelbaum et al. [19]
(see Theorem 2.3 in [19]). Therefore, the diffusion limits exist
in the form of the solution to (6). Also, Arnold [39] shows that,
for a linear SDE, the covariance matrix is the solution to (7) (see
Theorem 8.2.6 in [39]). Because (6) is a linear SDE, we get the
covariance matrix from (7). O

Proofof Lemma 1: According to the results from Arnold [39]
(see Theorem 8.2.10 in Arnold [39]), D(¢) is a Gaussian process
iff D(0) is Gaussian or constant. In our case, D(0) = 0, which
is constant. Therefore, D(#) is a Gaussian process. (|

Proof of Proposition 3: Because we use a finite number of
phases, and the rate functions are Lipschitz, the proposition
holds by applying the results from Mandelbaum et al. [19] (see
Theorem 2.2 in [19]). O

Proof of Proposition 4: Our model uses a finite number of
phases, and the rate functions are Lipschitz. Therefore, similar
to the proof of Proposition 2, (8) holds by using the results from
Mandelbaum et al. [19] (see Theorem 2.3 in [19]). Also, by
applying the results from Arnold [39] (see Theorem 8.2.6 in
[39]), the covariance matrix of D(¢) can be obtained by solving

the system of ODEs in (9). O

Proof of Lemma 1: Following the similar procedure as in

Lemma 1, the proposition holds. O
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