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Abstract—As wind energy penetration is expected to grow
in the future, wind resource assessment becomes important
in modern power grid operations. Selecting an appropriate
wind farm site can benefit from understanding nonstationary
characteristics of wind speeds. In particular, wind speed exhibits
a diurnal pattern and the pattern varies, day-by-day and site-
by-site. The goal of this study is to develop a new probabilistic
modeling approach for quantifying variation in the wind diurnal
pattern for assessing wind resource at unmonitored locations.
Specifically, we formulate the coefficient of wind model as a latent
random process and incorporate both day-to-day and spatial
variability into the latent process. The estimation performance
of the proposed approach is validated with actual data collected
in west Texas. The results demonstrate that our approach can
capture both spatially- and daily-varying patterns and quantify
the uncertainty successfully.

Index Terms—Bayesian inference, latent process, spatial anal-
ysis, wind energy

I. INTRODUCTION

Selecting an appropriate wind farm site is vital for the
success of wind energy in both financial and operational
aspects. Among several factors to be considered for assessing
potential wind farm site suitability, wind speed is clearly one of
the most important factors. In general, windy areas are desired
for installing a new wind farm. However, due to the wind’s
nonstationary characteristics, quantifying the wind variability
is also inevitable for effective power grid operations [1].

One of the most effective ways for comprehensive wind
resource assessment is to construct a wind model that charac-
terizes its diurnal pattern. However, weather measurement at a
candidate site may not be necessarily available in practice. For
such a non-observational site, a meteorological tower can be
installed to collect wind speed measurement. For more reliable
wind resource assessment, it is essential to collect and analyze
long-term wind resource (e.g., a year). However, installing new
meteorological towers to collect long-term data is expensive
and time-demanding for practical purposes.

Instead, one can collect wind measurement at a target site
for a short-period of time. Such data collection activity is
called measurement campaign [2], [3]. When a weather sta-
tion, which collects long-term data, exists at a location close to
the target site, the relationship of wind speeds between the two
sites can be established and the speed at the target site can be
estimated using the measurement at the weather station. Kwon
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[4] formulates the wind velocity at the target site as a linear
function of the velocity at the weather station and estimates
the linear function using the measurement collected at two
locations. Jung et al. [5] further extend the approach in [4]
and propose the Bayesian framework to handle various types
of uncertainties due to limited data collected during the short-
term measurement campaign. Similarly, Martinez-Cesena et
al. [6] use the linear model between the annual average
mean wind speeds at the target and measured locations. Even
though these studies do not require long-term collection of
measurement at the target location, short-term measurement
is still needed. Moreover, they generally focus on quantifying
the annual distribution of wind speed without considering its
time-varying and nonstationary characteristics.

Another approach is to use numerical weather prediction
(NWP) model. Zhang et al. [2] compare several NWP-based
wind resource assessment methods using three datasets, in-
cluding the Modern-Era Retrospective Analysis for Research
and Applications dataset which is a low-resolution dataset,
the Wind Integration National Dataset (WIND) which is a
high-resolution dataset based on the Weather Research and
Forecasting (WRF) model, and short-term campaign measure-
ment. It was shown that the analog ensemble method, which
integrates the low-resolution NWP dataset with the short-term
measurement, provides the best estimate of wind distribution
in most sites considered in their study, whereas the WIND
is suitable for estimating the distribution of the difference
between two consecutive hourly wind speeds. Jimenez et al.
[7] compare two different weather prediction models at six
locations, including offshore, onshore and island sites. In the
study by [8], six different WRF simulations are conducted with
different initial and boundary conditions and their estimation
performances are compared with measured data at thirteen
weather stations in Portugal. Their study shows that the new
initial and boundary datasets improve the prediction accuracy
over the old datasets. However, running NWP models requires
considerable computational burden, and appropriate initial and
boundary conditions need to be set a priori.

Unlike these prior studies, we consider a case where wind
measurement at nearby locations are available. Recent ad-
vances in sensing technology make meteorological measure-
ment increasingly available at many locations. This motivates
us to assess wind resource when measurement at the target site
does not exist, but data near the target site is available. Some
recent studies propose a spatial model for predicting wind
speed at a non-observational location. Lenzi et al. [9] apply
the Gaussian process (GP) to wind measurements collected at
neighbor locations at each time point. Byon et al. [10] spatially
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Fig. 1: Layout of multiple stations in west Texas region.

interpolate wind speeds at neighbor monitored stations for
estimating the speed at a target unmonitored station. Although
the models in [9], [10] provide estimates at non-observational
sites, they only provide a snapshot estimate at each time
instance, rather than providing wind models at the target site.
As such, the spatial snapshot approach cannot fully describe
the wind variability over time.

To illustrate, Fig. 1 shows a partial layout of actual mete-
orological stations in West Texas Mesonet [11]. West Texas
Mesonet is an integrated network of meteorological monitored
stations designed to observe meteorological conditions in the
west Texas region [11]. The x- and y-axes in Fig. 1 represent
the longitude and latitude, respectively. The solid circles
denote the meteorological stations where wind speed data is
collected. Suppose that the red star in Fig. 1 is a potential wind
farm site where wind measurement is not available. Fig. 2
shows hourly average wind speeds at three stations, ANTO,
REES, and SEMI, during the first week of January 2008. It
is observed that overall wind speed pattern during each day
shows a diurnal cycle and the diurnal patterns among the three
stations are highly correlated. In particular, the patterns in
ANTO and REES are more similar than that in SEMI, because
ANTO and REES are more closely located. Therefore, we can
borrow information of time-series characteristics at neighbor
stations to assess wind resources at the target site.

It is also observed that diurnal cycles change day-by-day.
For example, the pattern on the first day is quite different
from that on the last day in Fig. 2. Fig. 3 further shows
daily patterns at BROW during January 2008, where the thick
curve represents the average diurnal pattern during January.
Although there is commonality, wind patterns substantially
differ day-by-day. As such, one cannot fully characterize wind
variability with the average pattern only. Therefore, the wind
resource assessment requires thorough understanding of the
spatially- and daily-varying nonstationary characteristics.

This study develops a systematic approach to estimate
diurnal patterns of wind speed and to quantify estimation
uncertainties by using measurements collected at spatially
dispersed nearby stations. We present a new modeling ap-

proach that formulates the time-varying pattern with daily- and
spatially-varying coefficients. The parameters in the proposed
model are estimated in a Bayesian hierarchical framework.

The main contribution of this study is two-fold: (1) Unlike
the aforementioned studies that use the short-term measure-
ment campaign data and/or NWP data, our approach uses wind
measurement collected at nearby locations; (2) In contrast
to the studies in [9], [10], the proposed approach provides
a probabilistic wind model, which enables us to fully char-
acterize the time-varying pattern of wind speed and quantify
the uncertainties. The resulting model can generate scenarios
of wind speed trajectories, which can be used for investment
decision-making in wind power projects [6]. A case study is
carried out using actual data collected in West Texas Mesonet.
The implementation results demonstrate that the proposed
approach is capable of successfully characterizing the wind
variability at unmonitored sites, which provides useful insights
for wind resource assessment.

The remainder of this paper is organized as follows. Sec-
tion II discusses the proposed modeling approach and parame-
ter estimation procedure. Section III presents a case study and
Section IV concludes the paper.

II. METHODOLOGY

A. Integrative Modeling Approach

This section develops an integrative framework for quanti-
fying the day-to-day and spatial variability in wind’s diurnal
pattern at non-observational locations. The underlying idea is
as follows. We formulate the wind model using trigonometric
functions to characterize a nonstationary pattern. Considering
that diurnal patterns at neighbor locations should exhibit
similarity and could change over different days, we make the
model coefficients spatially correlated and daily-varying.

Let Y (s, d, t) denote the wind speed at a location s at time
t on day d. In this study, an hourly average measurements
are considered, but the proposed approach can be applied to
data with different temporal resolutions. To address the cyclic
diurnal pattern, the wind speed, Y (s, d, t), is formulated using
L pairs of trigonometric functions [12], [13] as follows.

Y (s, d, t) = µ(s, d, t) + ε(s, d, t) (1)

with

µ(s, d, t) = β0(s, d)

+
L∑
`=1

[
β1,`(s, d) sin

2`πt

24
+ β2,`(s, d) cos

2`πt

24

]
,

(2)

where ε(s, d, t) ∼ N(0, σ2) is a Gaussian random noise. As
a remark, an additional seasonal cycles can be included in
µ(s, d, t) [10]. But such model assumes that the diurnal pattern
remains the same in different seasons, which may not hold
in practice. Instead, we suggest building monthly models with
the formulation in (2), so heterogeneous diurnal patterns which
could vary, depending on seasons, can be captured.

To capture day-to-day and location-to-location variations,
we formulate each model coefficient as a latent process and
decompose it into day-specific and site-specific random effects
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Fig. 2: Wind speed patterns at three stations, ATNO, REES, and SEMI in west Texas in the first week
of January 2008.

Fig. 3: Day-to-day variations at BROW on Jan-
uary 2008.

(Fig. 4). The day-specific latent process captures the day-to-
day variation, whereas the site-specific random effects quantify
the spatial correlation among multiple sites. Specifically, let
β(s, d) denote a vector of model coefficients, i.e.,

β(s, d) = (3)

[β0(s, d), β1,1(s, d), β2,1(s, d), . . . , β1,L(s, d), β2,L(s, d)]T .

and βi(s, d) denote the ith coefficient of β(s, d). Depending
on the flexibility to specify βi(s, d), three different models,
referred to as integrative model 1, 2 and 3 (shortly, IM1, IM2
and IM3) are proposed as follows.

• IM1 assumes that the day-specific parameter on day d
are dependent on that on day d − 1, implying that wind
diurnal patterns on the two consecutive days are similar
each other.

• IM2 allows more flexibility in describing day-to-day
variations. It lets the day-specific parameter randomly
vary day-by-day. Thus, IM2 is appropriate when the daily
pattern changes significantly.

• IM3 further allows the spatial correlation structure to be
heterogeneous on different days, in contrast to IM1 and
IM2 which implicitly assume the homogeneous spatial
correlation structure.

Below we describe each model in more detail.
1) Integrative model 1 (IM1): To quantify spatial and daily

variations, βi(s, d) is decomposed into two components as

βi(s, d) = βiS(s) + βiD(d) (4)

where βiD(d) is a day-specific coefficient and βiS(s) is a
location-specific coefficient. Fig. 4 shows the overall frame-
work of IM1 model.

First, to capture the spatial correlation, the site-specific
coefficient βiS(s) in (4) is formulated as a spatially-varying
parameter [14], [?]. It should be noted that the pattern at
closely located sites is similar to one another, as observed in
Fig. 2. Accordingly, βiS(sj) should be similar to βiS(sk) for
closely located sites, sj and sk. To characterize such spatial
dependency, βiS(s) is modeled with the latent GP [16] as

βiS(s) ∼ GF(µi(s), Ci), (5)

for i = 1, 2, · · · , 2L + 1, where µi and Ci denote the mean
and covariance functions for βiS(s), respectively.

By the consistency property of GP, a collection of βiS(s)’s
jointly follow multivariate normal distribution [16]. Suppose
that there are N monitored stations, s = s1, s2, · · · , sN . Let
βiS,obs denote an N × 1 vector of βiS(s)’s, i.e., βiS,obs =

[βiS(s1), βiS(s2), · · · , βiS(sN )]T . Then, we have

βiS,obs ∼MVN(0,Σi), (6)

where Σi denotes an N ×N covariance matrix whose (j, k)th

component, ci(sj , sk), is the covariance function between
stations sj and sk. Here ci(sj , sk) is a positive definite kernel
function. Among several choices for modeling ci(sj , sk), one
of the commonly used covariance functions is the Matérn
covariance function, defined as

ci(sj , sk) =
τ2i

2ν−1Γ(ν)
(κi||xj−xk||)νKν(κi||xj−xk||), (7)

where xj is the location of station sj , τ2i is the marginal
variance, Kν is the modified Bessel function of second kind
of order ν > 0, Γ(·) is the Gamma function, || · || is the
Euclidean distance, and κi is the decay parameter [17]. The
parameter, ν, is a smoothness parameter, affecting differentia-
bility of the underlying process. In general, ν is fixed to 1
for computational convenience [18]. Due to its flexibility and
computational advantage, the Matérn covariance function is
employed in our implementation, however, other covariance
functions can be employed in the proposed framework [19].

Using the coefficients, βiS(s)’s (s = s1, s2, · · · , sN ), the
coefficient at an unmonitored site is obtained. Let s0 denote a
non-observational location. Given the parameter vector, βiS,obs,
the coefficient, βiS(s0), at the non-observational site becomes
normally distributed as

βiS(s0)|βiS,obs ∼ N(µi(s0), τ2i (s0)), (8)

with

µi(s0) = ci(s0)T · Σ−1i · β
i
S,obs, (9)

τ2i (s0) = τ2i − ci(s0)TΣ−1i ci(s0), (10)

where ci(s0) = [ci(s0, s1), ci(s0, s2), · · · , ci(s0, sN )]T is an
N×1 vector for i = 1, 2, · · · , 2L+1. The results implies that
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Fig. 4: Overall framework of the integrated model 1 (IM1).

once the spatial parameters at monitored sites are estimated,
the parameter at an unmonitored site can be estimated accord-
ingly. While we present the estimation procedure at a single
unmonitored site in (8)-(10), the results can be extended for
simultaneously estimating parameters at multiple sites [16].

Next, in describing the day-to-day variability, we observe
that the daily pattern in one day tends to be similar to the
pattern in the next day (Fig. 2). Therefore, the day-specific
parameter, βiD(d), could be highly correlated with βiD(d −
1). To characterize such temporal correlation, we apply the
autoregressive (AR) process to βiD(d) as

βiD(d) = βiD,0 + ρiβ
i
D(d− 1) + εiD, (11)

where εiD denotes the random noise, εiD ∼ N(0, δ21i). Here,
we present AR1 for simplicity, but a higher order AR process
can be employed.

2) Integrative model 2 (IM2): The second model, IM2,
uses the same decomposition structure in (4) with the same
spatial term. However, unlike IM1 that restricts the day-
specific parameter to be temporally correlated, IM2 lets βiD(d)
be fully random day-by-day.

Specifically, βiD(d) is formulated as random effects.
Let βiD denote D × 1 vector of βiD(d)’s, i.e., βiD =
[βiD(1), βiD(2), . . . , βiD(D)]T . Then we have

βiD ∼MVN(0, δ22iI), (12)

for i = 1, 2, . . . , 2L+ 1, where I is a D ×D identity matrix
and δ22i is the corresponding variance term.

3) Integrative model 3 (IM3): In IM1 and IM2, the spatial
correlation is assumed to be homogeneous in different days
(note that βiS(s) is the same for all d’s in (4)). To allow the
heterogeneous spatial correlation structure on different days,
IM3 breaks down βi(s, d) into two components as follows.

βi(s, d) = βiS(s, d) + βiD(d). (13)

Note that the spatial effect, βiS(s, d), also depends on d, unlike
βiS(s) that depends on s only in IM1 and IM2 (see (4)).

As in IM1 and IM2, βiS(s, d) is modeled as a la-
tent GP. Let βiS,obs(d) denote an N × 1 vector of

βiS(s, d)’s at monitored stations on day d, i.e., βiS,obs(d) =

[βiS(s1, d), βiS(s2, d), · · · , βiS(sN , d)]T . Then,

βiS,obs(d) ∼MVN(0,Σi(d)), (14)

Here, Σi(d) is an N × N covariance matrix on day d. It is
assumed that βiS,obs(d) is independent of βiS,obs(d

′) for d 6= d′.
For the day-specific parameter βiD(d), it is modeled as

random effects in (12) as in IM2. Table I summarizes the
decomposition structure in three integrative models.

B. Implication
Before discussing the parameter estimation procedure, it

is worthwhile to discuss the primary difference between the
proposed approach and the snapshot approach in [9], [10]. The
snapshot approach directly formulates the correlation among
Y (s, d, t)’s through interpolation techniques such as GP and
kriging. For example, GP is applied to the measurement at
monitored locations to estimate wind speed at the unmonitored
location at each time instant. The salient feature of the pro-
posed approach is that we characterize the correlation structure
through the latent process, βi(s, d)’s, instead of Y (s, d, t)’s.
Assuming that the day-specific effect and spatial random
effect, are independent, the covariance of model coefficients
in IM1 is given by

Cov(βi(sj , d), βi(sk, d
′))

= Cov(βiD(d), βiD(d′)) + Cov(βiS(sj), β
i
S(sk)) (15)

where Cov(βiS(sj), β
i
S(sk)) is given in (7) and

Cov(βiD(d), βiD(d′)) in AR1 [20] is

Cov(βiD(d), βiD(d′)) = δ21i
ρ
|d−d′|
i

1− ρ2i
. (16)

Therefore, we get

Cov(βi(sj , d), βi(sk, d
′)) =

=



τ2i + δ21i
1

1−ρ2i
, for j = k, d = d′

ci(sj , sk) + δ21i
1

1−ρ2i
, for j 6= k, d = d′

τ2i + δ21i
ρ
|d−d′|
i

1−ρ2i
, for j = k, d 6= d′

ci(sj , sk) + δ21i
ρ
|d−d′|
i

1−ρ2i
, for j 6= k, d 6= d′

(17)
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TABLE I: Decomposition structure in latent process

IM1 IM2 IM3

Decomposition model βi(s, d) = βi
S(s) + βi

D(d) βi(s, d) = βi
S(s) + βi

D(d) βi(s, d) = βi
S(s, d) + βi

D(d)

Latent spatially-varying βi
S(s) ∼ GP βi

S(s) ∼ GP βi
S(s, d) ∼ GP (d)

parameter (homogeneous spatial pattern) (homogeneous spatial pattern) (heterogeneous spatial pattern)

Latent daily-varying βi
D(d) ∼ AR βi

D(d) ∼ random effects βi
D(d) ∼ random effects

parameter (temporarily correlated diurnal pattern) (temporarily uncorrelated diurnal pattern) (temporarily uncorrelated diurnal pattern)

where ci(sj , sk) is the (j, k)th component of the covariance
matrix, Σi, in (14). Note that βiD(d) and βiD(d′) are strongly
correlated when d and d′ are closer, thereby making βi(sj , d)
and βi(sj , d

′) similar to each other. Likewise, βiS(sj) and
βiS(sk) at closely located sj and sk have larger covariance,
ci(sj , sk). The covariance structures in IM2 and IM3 can be
similarly specified. We omit them to save space.

C. Parameter estimation

This section discusses the parameter estimation procedure.
We focus our discussion on estimating parameters in IM1.
The parameter estimation in IM2 and IM3 can be performed
in a straightforward way. We use wind measurement at N
monitored stations at time t = 1, 2, . . . , T (e.g., T = 24
for hourly collected data) during D days (d = 1, 2, · · · , D).
Because the day-specific and site-specific parameters are for-
mulated as latent processes, the proposed model has a multi-
level hierarchical structure. The first level formulates the data
model in (1). The second level specifies the latent processes
for the spatially- and daily-varying parameters. The last level
provides a prior density for hyperparameters.

We estimate the parameters in the Bayesian inference frame-
work [21]. Let D denote the dataset used for inference, and
let Θ denote a set of all parameters in the model. The joint
posterior density of Θ is given by

p(Θ|D) ∝
[
Πs,d,tf(Y (s, d, t)|µ(s, d, t), σ2)

]
p(σ2)

×Πi

[
MVN(0,Σi)p(ρi)p(δ

2
1i)p(τ

2
i )p(κi)

]
,

(18)

where f(Y (s, d, t)|µ(s, d, t), σ2) represents the likelihood of
wind speed with Y (s, d, t) ∼ N(µ(s, d, t), σ2), p(ρi) and
p(δ21i) imply the priors in the latent AR process for the daily-
varying coefficient in (12), and MVN(0,Σi) denotes the la-
tent Gaussian process in (14) for spatially-varying coefficients.
Lastly, p(ρi), p(δ21i), p(τ2i ), p(κi), and p(σ2) denote prior den-
sities for their corresponding parameters and hyperparameters.

The posterior mean from the posterior density in (18)
is used for estimating parameters. Obtaining the posterior
density requires multi-dimensional integration, and it is not
derived in a closed form. Therefore, simulation-based methods
such as Markov chain Monte Carlo (MCMC) can be used
to approximate the posterior density. However, implementing
MCMC demands expensive computational cost, so we use an
approximation method. In particular, we employ the integrated
nested Laplace approximations (INLA) in our analysis [19].
For more details on the INLA approximation procedure,
please refer to [19]. In our analysis, ‘R-INLA’ package in
the statistical software, R [18] is used. In our implementation,

priors are specified as suggested in INLA. When parameters
are estimated in the Bayesian hierarchical framework, it has
been known that the deviance information criterion (DIC) is
useful for choosing a model order, L, in our model [22]. For
more details on DIC, please refer to [22].

Once the parameters are estimated, the estimated distribu-
tion of the wind speed at the target site s0 is provided by

Y (s0, d, t) ∼ N(µ̂(s0, d, t), σ̂
2(s0, d, t)) (19)

with

µ̂(s0, d, t) = β̂0(s0, d) (20)

+

L∑
`=1

[
β̂1,`(s0, d) sin

2`πt

24
+ β̂2,`(s0, d) cos

2`πt

24

]
,

where β̂(·)’s in (20) denote the posterior means for the corre-
sponding parameters and σ̂2(s0, d, t) is the posterior variance
of Y (s0, d, t).

III. CASE STUDY
We use wind measurement collected at 16 stations in

West Texas Mesonet in this study. The shortest and average
distances between two adjacent stations are 18.6 km and 36.3
km, respectively. The location information of the stations can
be found in [11].

As discussed earlier, we suggest building monthly diurnal
models to account for heterogeneous diurnal patterns in differ-
ent seasons. Wind resource assessment requires quantification
of year-long wind pattern. Due to the time limitation, we were
not able to estimate year-long pattern, but we implement our
method using four months data, including January, April, July
and November in 2008. The original data contains 5-minute
average wind speeds at a height of 10 meter above the surface.
In this study, hourly-averaged wind speeds are used.

A. Alternative two-step approach

This section presents an alternative approach that extends
the spatial snapshot approach [10]. First, the snapshot estimate,
Ỹ (s0, d, t), for the target station, s0, is estimated by spatially
interpolating wind speeds at neighbor stations, Y (s, d, t) (s =
s1, s2, · · · , sN ), through the ordinary kriging as

Ỹ (s0, d, t) = wTYd,t, (21)

for each d and t, d = 1, 2, . . . , D, and t = 1, 2, · · · , T . Here
Yd,t is a vector whose ith component is Y (si, d, t) and w =
[w1, . . . , wN ]T is the weight matrix, defined as

w = C−1c− C−111TC−1c

1TC−11
+

C−11

1TC−11
, (22)



1949-3029 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2020.2965444, IEEE
Transactions on Sustainable Energy

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 6

where C is an N ×N covariance matrix among Yd,t, c is an
N × 1 dimensional covariance between Yd,t and Ỹ (s0, d, t)
and 1 is an N × 1 dimensional vector with 1 elements.
Although we present the ordinary kriging, other kriging mod-
els (e.g., universal kriging), or GP, can be employed for
performing the spatial interpolation.

Once the snapshot estimate is estimated, the time series
model at the unmonitored site, s0, is fitted as follows.

Ỹ (s0, d, t) = β0(s0, d)

+
L∑
`=1

[
β1,`(s0, d) sin

2`πt

24
+ β2,`(s0, d) cos

2`πt

24

]
+

p∑
i=1

γh(s0, d)Ỹ (s0, d, t− i) + ε(s0, d, t), (23)

where p denotes the model order in the AR process, which
is decided based on the Akaike information criterion (AIC).
The noise term, ε(s0, d, t), is assumed to be an independent
Gaussian random variable. We estimate parameters using
maximum likelihood estimation.

Below this two-step alternative approach is summarized.
Step 1 At each time point, obtain a snapshot estimate

by spatially interpolating the wind measurements
collected at neighbor stations using (21)-(22).

Step 2 Fit the linear model with the snapshot estimates,
using (23).

B. Implementation results

For evaluating the estimation performance, we divide the
16 stations into two sets: training set (in-sample) and testing
set (out-of-sample). The training set includes measurements
at 15 stations, representing observational sites, whereas the
testing set contains data collected at the remaining station
which represents a non-observational site. Using data from
the 15 stations in the training set, we estimate the wind speed
at the testing station and evaluate the prediction performance
by comparing its estimated and measured wind speeds. This
procedure is repeated 16 times to get all estimation results for
16 testing stations. Therefore, with four months data, our case
study includes 16 stations × 4 months = 64 testing cases.

We measure the estimation performance with several crite-
ria. First, for evaluating the point estimation capability, root
mean square error (RMSE) is used. We also employ the
continuous ranked probability score (CRPS) [23], [24], defined
as follows, when parameters are estimated in the Bayesian
framework [23], [24].

CRPS =
1

DT

D∑
d=1

T∑
t=1

[ 1

m

m∑
j=1

|Ŷ (j)(s0, d, t)− Y (s0, d, t)|

− 1

2m2

m∑
j=1

m∑
k=1

|Ŷ (j)(s0, d, t)− Ŷ (k)(s0, d, t)|
]

(24)

where m is the number of posterior samples in the posterior
predictive density and Ŷ (j)(s0, d, t) denotes the jth samples.
For the alternative approach, CRPS measure presented in [23]
is used. The smaller CRPS indicates better performance.

Tables II and III summarize the RMSE and CRPS results
for four months, respectively, for 16 testing stations where

each testing station is considered as a non-observational site.
Overall, the estimation performance at testing stations located
in the center of monitored stations (e.g., REES and BROW)
is generally better than that at boundary stations (e.g., ABER,
GAIL and MORT). This is understandable because the central
stations have more informative spatial information from their
neighbor stations than boundary stations. Overall, IM3 con-
sistently provides the smallest values in most testing sites in
both criteria. For example, on average it generates 14% lower
RMSE and 18% lower CRPS, compared to the alternative
approach on January.

It is worthwhile to mention that, although IM1 and IM2
generate performance comparable to the alternative approach,
they do so with much lower model complexity. In the alter-
native approach, three parameters need to be estimated to get
a snapshot estimate using the ordinary kriging at each time
instant. Therefore, it requires 3DT + 2L + p + 2 parameters
in total for each month. With D = 31, T = 24, L = 5,
and p = 2, it uses 2,246 parameters. On the contrary, IM1
uses 4(2L + 1) + 1 parameters (4 parameters, τi, κi, βiD,0,
and ρi, for each i and variance parameter, σ2), whereas
IM2 uses 3(2L + 1) + 1 parameters (3 parameters, τi, κi,
and δ22i, for each i and variance parameter). Thus, IM1 and
IM2, respectively, employ 45 and 34 parameters only, which
account for about 1.5% and 2% of the alternative’s. With such
remarkably smaller number of parameters, they lead to the
estimation performance similar to the alternative approach.
The number of parameters required in IM3 is larger than those
in IM1 and IM2, because its spatial parameters differ day-by-
day, however, IM3 still reduces the model complexity over the
alternative approach by about 69%.

Another advantage of the proposed approach is that it
can better quantify the estimation uncertainty. The proposed
approach can obtain the posterior predictive density and pre-
diction interval (PI) in the Bayesian framework. Fig. 5 presents
the measured and estimated speeds at a testing station, BROW,
for the first week of January, along with PI. The bold central
lines denote the predicted values and the dotted upper and
lower lines denote the 90% PIs. It shows that most estimated
speeds in IM1, IM2, and IM3 belong to the PIs.

However, it is difficult, if not possible, to accommodate all
uncertainties in the alternative approach, because it character-
izes the spatial and temporal correlation separately through
the two-step procedure. Therefore, we alternatively treat the
snapshot estimates as real values and build the PI with the
model in (23). Fig. 5(d) shows that the resulting PIs are
unduly narrow and thus, several data points are located outside
the intervals, indicating underestimated uncertainties. As a
result, the coverage rate of the alternative model is much
lower than ours. Here, the coverage rate implies the ratio of
the number of estimates within PIs to the total number of
estimates. Ideally, the coverage rate should be close to the
nominal rate. For example, in January, the average coverage
rate of the alternative approach remains at 67.6% for the 90%
PI, whereas the coverage rates from IM1, IM2, and IM3 are
89.3%, 89.5%, and 86.7%, respectively, which are close to
the nominal rate. It is also worthwhile to mention that the
PIs from our approach are wider, because it fully quantifies
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uncertainties for estimating spatial and day-to-day variability.
To further assess probabilistic estimation performance, re-

liability diagram [9] is employed. To construct the reliability
diagram, an indicator variable that compares an actual speed,
Y (s0, d, t) with its α-quantile forecast, Ŷ (α)(s0, d, t), for
0 ≤ α ≤ 1 is obtained as

I
(α)
s0,d,t

=

{
1, if Y (s0, d, t) ≤ Ŷ (α)(s0, d, t)

0, if Y (s0, d, t) > Ŷ (α)(s0, d, t),
(25)

Then, similar to the PI coverage, the empirical coverage in the
reliability diagram is obtained as

â(α)s0 =
1

DT

D∑
d=1

T∑
t=1

I
(α)
s0,d,t

. (26)

The reliability diagram compares the empirical coverage
with the nominal coverage. The empirical coverage becomes
close to the nominal coverage, α, when the probabilistic esti-
mation is performed appropriately. We compare the empirical

coverage at nominal levels from 5% to 95% on increments of
5% in Fig. 6. The average reliability diagram in Fig. 6(c) is
constructed by taking the average of empirical coverage from
all 16 testing stations. The empirical coverage from IM1, IM2,
and IM3 align with the diagonal line in all cases, while those
from the two-step approach deviate from the diagonal line.
This result demonstrates a stronger probabilistic assessment
capability of the proposed approach over the alternative one.

In summary, although the proposed integrative and alterna-
tive two-step approaches provide comparable point estimation
capability, our approach quantifies wind variability better so
its estimated density is more accurate. Our strong probabilistic
assessment performance is mainly due to the fact that our
approach can capture different types of uncertainties arising
from spatial and diurnal variations in an integrative way.

Among the studied models, the performance of IM1 and
IM2 were comparable in most cases. This result coincides with
our observation in Fig. 2 where the daily pattern is similar
on consecutive days. Therefore, when the diurnal patterns do

TABLE II: Comparison of RMSEs at 16 testing stations (unit: m/s, SD in the last row represents standard deviation)

January April July November

IM1 IM2 IM3 Two-step IM1 IM2 IM3 Two-step IM1 IM2 IM3 Two-step IM1 IM2 IM3 Two-step

ABER 1.28 1.28 1.09 1.33 1.41 1.36 1.08 1.35 0.97 0.98 0.87 0.95 0.91 0.90 0.85 0.97
REES 0.96 0.96 0.78 0.96 1.07 1.07 0.88 1.08 1.07 1.08 0.92 1.04 0.77 0.78 0.69 0.80
RALL 1.21 1.21 1.10 1.10 1.23 1.25 1.10 1.23 0.99 0.99 0.87 0.91 1.02 1.04 0.97 1.02
ANTO 1.20 1.20 0.97 1.18 1.20 1.20 0.96 1.16 0.94 0.94 0.83 0.93 0.96 0.97 0.83 0.96
SLAT 1.33 1.34 1.23 1.37 1.44 1.46 1.31 1.45 1.20 1.20 1.08 1.17 1.18 1.18 1.16 1.20
LEVE 1.12 1.11 0.91 1.14 1.12 1.12 0.93 1.13 0.83 0.82 0.70 0.83 0.75 0.75 0.67 0.76
MORT 1.36 1.37 1.12 1.45 1.42 1.42 1.25 1.52 1.03 1.01 0.92 1.00 1.13 1.13 0.95 1.16
BROW 0.92 0.92 0.83 0.94 0.97 0.97 0.90 0.98 0.95 0.95 0.90 1.01 0.85 0.84 0.79 0.85
MALL 0.97 0.97 0.76 0.98 1.01 1.01 0.84 0.99 0.83 0.83 0.71 0.80 0.85 0.86 0.71 0.86
ODON 1.12 1.12 1.00 1.05 1.44 1.44 1.32 1.35 0.80 0.80 0.76 0.78 0.95 0.98 0.86 0.90
FLUV 1.48 1.49 1.19 1.15 1.55 1.56 1.30 1.26 1.09 1.10 1.00 1.06 1.35 1.36 1.22 1.20
PLAI 1.19 1.18 0.94 1.18 1.29 1.31 1.04 1.20 0.93 0.93 0.79 0.88 0.99 0.99 0.79 0.96
GAIL 1.48 1.47 1.31 1.38 1.63 1.61 1.40 1.52 1.16 1.17 1.10 1.07 1.21 1.21 1.17 1.11
SEAG 1.21 1.20 1.00 1.19 1.33 1.34 1.09 1.29 0.90 0.89 0.77 0.86 1.01 1.01 0.90 0.99
LAMS 1.16 1.14 0.96 1.10 1.31 1.31 1.10 1.25 0.96 0.96 0.88 0.97 1.06 1.02 0.86 0.91
SEMI 1.30 1.31 1.06 1.18 1.37 1.35 1.09 1.22 1.01 1.00 0.85 0.95 1.03 1.03 0.90 0.96

Average 1.20 1.20 1.01 1.17 1.30 1.30 1.10 1.25 0.98 0.98 0.87 0.95 1.00 1.00 0.90 0.98
(SD) (0.17) (0.17) (0.15) (0.15) (0.19) (0.19) (0.17) (0.16) (0.11) (0.11) (0.12) (0.11) (0.16) (0.11) (0.17) (0.13)

TABLE III: Comparison of CRPSs at 16 testing stations (unit: m/s, SD in the last row represents standard deviation)

January April July November

IM1 IM2 IM3 Two-step IM1 IM2 IM3 Two-step IM1 IM2 IM3 Two-step IM1 IM2 IM3 Two-step

ABER 0.71 0.71 0.58 0.77 0.78 0.74 0.59 0.75 0.53 0.54 0.48 0.53 0.51 0.50 0.46 0.55
REES 0.54 0.54 0.42 0.53 0.60 0.60 0.48 0.59 0.60 0.60 0.52 0.62 0.44 0.43 0.38 0.46
RALL 0.68 0.68 0.61 0.53 0.68 0.69 0.60 0.68 0.55 0.55 0.48 0.54 0.57 0.58 0.53 0.61
ANTO 0.66 0.66 0.54 0.68 0.67 0.67 0.54 0.66 0.52 0.52 0.45 0.52 0.53 0.54 0.46 0.57
SLAT 0.74 0.75 0.68 0.84 0.80 0.81 0.74 0.87 0.68 0.67 0.61 0.71 0.67 0.67 0.66 0.74
LEVE 0.61 0.61 0.49 0.65 0.62 0.62 0.51 0.64 0.45 0.46 0.38 0.47 0.43 0.43 0.38 0.44
MORT 0.77 0.76 0.62 0.86 0.80 0.80 0.70 0.90 0.57 0.55 0.51 0.59 0.63 0.63 0.52 0.69
BROW 0.52 0.52 0.46 0.54 0.55 0.55 0.49 0.56 0.53 0.53 0.50 0.60 0.48 0.47 0.43 0.50
MALL 0.55 0.55 0.42 0.56 0.57 0.57 0.46 0.56 0.46 0.47 0.39 0.44 0.48 0.48 0.40 0.50
ODON 0.61 0.61 0.54 0.66 0.79 0.79 0.73 0.79 0.45 0.45 0.43 0.45 0.53 0.53 0.48 0.54
FLUV 0.86 0.85 0.67 0.66 0.88 0.89 0.74 0.72 0.61 0.61 0.57 0.64 0.77 0.77 0.69 0.71
PLAI 0.65 0.66 0.52 0.68 0.70 0.71 0.56 0.68 0.52 0.53 0.44 0.51 0.55 0.55 0.44 0.57
GAIL 0.82 0.82 0.74 0.86 0.93 0.92 0.82 0.96 0.66 0.66 0.64 0.66 0.68 0.68 0.67 0.66
SEAG 0.68 0.68 0.56 0.73 0.73 0.73 0.59 0.78 0.49 0.49 0.43 0.51 0.57 0.57 0.51 0.61
LAMS 0.63 0.64 0.54 0.65 0.72 0.73 0.61 0.73 0.53 0.52 0.48 0.58 0.60 0.58 0.49 0.55
SEMI 0.73 0.72 0.59 0.69 0.75 0.74 0.60 0.72 0.56 0.57 0.47 0.56 0.57 0.58 0.57 0.57

Average 0.67 0.67 0.56 0.68 0.72 0.72 0.61 0.72 0.54 0.54 0.49 0.56 0.56 0.56 0.50 0.58
(SD) (0.10) (0.10) (0.09) (0.11) (0.11) (0.11) (0.11) (0.12) (0.07) (0.07) (0.07) (0.08) (0.09) (0.09) (0.10) (0.09)
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(a) IM1

(b) IM2

(c) IM3

(d) Two-step approach

Fig. 5: Comparison of observed and predicted wind speeds and prediction
intervals at the testing station, BROW, in January

not rapidly change, either the AR formulation in (11) or ran-
dom effect formulation in (12) would provide similar results.
When the diurnal pattern changes considerably, we suggest
the random effect formulation used in IM2. Regarding the
spatial correlation, it has been known that the dominating wind
direction substantially affects the correlation structure [21].
Therefore, IM3 would perform better than IM1 and IM2
when wind direction varies substantially even during the same
month.

(a) Testing station: BROW

(b) Testing station: MORT

(c) Average

Fig. 6: Reliability diagram in January

IV. CONCLUSION AND FUTURE PLANS

This study develops a probabilistic model for assessing
wind resource by characterizing the spatial and temporal
correlations through the model parameters. Specifically, the
model parameters are treated as latent spatially- and daily-
varying random processes. Such collective treatment enables
the proposed integrative approach to provide compelling capa-
bilities for evaluating the wind variability at non-observational
locations. A case study using actual data demonstrates that
the proposed approach is capable of fully quantifying wind
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variations, which provides insights for selecting wind farm
locations.

In the future, we plan to extend our analysis to account
for wind direction, other environmental factors [13], a site’s
local characteristics (e.g., terrain type) and information from
physics-based NWP models for improving the prediction ac-
curacy and applicability of the proposed approach.
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